
Version: 2/3/2002 3:36 PM

FFAARRGOS/VISTA
HTTP Serv

NOTE: The information contained with
document refers to a continuously enh
product. Since the last release of this
some Application Programming Interfa
have been extended and entirely new
may have been added. Programmers
encouraged to review the latest docum
that is online.

GOS/VISTA
er Programmer’s Guide

in this
anced
 document,
ces may be
functionality
are strongly
entation

ii

FARGOS/VISTA HTTP Server Programmer’s Guide
FARGOS Development, LLC
757 Delano Road
Yorktown Heights, NY 10598
http://www.fargos.net
mailto:support@fargos.net

Copyright 2000 - 2002 FARGOS Development, LLC

NNoottiiccee ooff RRiigghhttss
All rights reserved. This document may be rendered into whatever form is useful for
the user, including electronic transmission or printing, so long as the content is not
altered.

TTrraaddeemmaarrkkss
FARGOS/VISTA, FARGOS/SolidState and FARGOS/SolidConnection are trademarks of
FARGOS Development, LLC.

AAbbbbrreevviiaattiioonnss
FARGOS Development, LLC is a Limited Liability Company registered with the State
of New York. It is required to identify itself as such in its name, hence the “, LLC”
suffix. For purposes of readability in this document, the “, LLC” suffix is sometimes
dropped. The phrase “FARGOS Development” always denotes “FARGOS
Development, LLC” and is not intended to suggest any alternate form of
organization.

NNoottiiccee ooff LLiiaabbiilliittyy
Information in this document is distributed on an “As Is” basis, without warranty.
While every precaution has been taken in the preparation of this document, FARGOS
Development, LLC shall not have any liability to any person or entity with respect to
any loss or damage caused or alleged to be caused directly or indirectly by the
instructions contained within this document or by the computer software or hardware
products described in it.

http://www.fargos.net/
mailto:support@fargos.net

iii

Contents
Introduction ..1

Another HTTP Server?..1
HTTP Server Administration...3

HTTP Server Configuration..3
HTTP Server Profile..5
External Interfaces ..7

HTTP Server Application Programming Interfaces ...9
Model of Operation ..9
Document Caching ..10
Access Control ..11
Convenience Classes..11
Support Functions ...11
Example of an HTTP-based Service ..12

Server-Side-Include Processor ...15

1

1. Introduction
FARGOS/VISTA implements a transparently distributed, multi-threaded, object-
oriented environment that supports many kinds of applications. One such
application is a Hypertext Transfer Protocol (HTTP) server, which forms a key
component of the current suite of Internet-enabled applications. Most distributions
of the FARGOS/VISTA Object Management Environment are configured to contain an
HTTP 1.1 server implementation (see RFC 2616)1. Many FARGOS/VISTA-based
applications integrate with the HTTP server to either implement a graphic user
interface using World Wide Web browsers or provide support for HTTP-based
services.

The FARGOS/VISTA HTTP server has several intrinsic abilities. The most frequently
used ability provides read-only access to a document tree that is comprised of a
collection of directories located on the local file system. As part of its fundamental
feature set, the HTTP server also implements an automatic cache of referenced
documents and automatically processes server-side-include directives. The server-
side-include processor permits HTML to be generated at runtime based on templates
and environment variables.

This Programmer’s Guide is intended to be used by FARGOS/VISTA application
developers who desire to create HTTP-based applications or services.

Another HTTP Server?
Given the existence of well-respected web servers from a variety of vendors, of
which Apache is the most popular, one could be forgiven for asking "why does the
world need another web server"? The FARGOS/VISTA HTTP server’s primary reason
for existence is to provide a tightly coupled mechanism for exporting
FARGOS/VISTA-based services via HTTP. For security reasons and as a 24x7 test
bed for FARGOS Development, LLC, the FARGOS/VISTA HTTP server has run
www.fargos.net from its first day of operation. It has been used as the only server
technology for www.alecbaldwin.com, www.vodusa.com and others, with all of the
backend operations having been implemented as FARGOS/VISTA-based applications.
A FARGOS/VISTA HTTP server replaced an Apache-based installation at
www.archiecomics.com in a successful attempt to stabilize a site that was failing
every 2-4 days. Once a FARGOS/VISTA server was installed, outages ceased.

Experience has shown that the FARGOS/VISTA HTTP server is quite robust and, since
it is part of the FARGOS/VISTA infrastructure, it is quite simple to develop web-
based applications that can take advantage of a distributed environment.

1 The only exceptions are custom OEM configurations.

http://www.ietf.org/rfc/rfc2616.txt
http://www.fargos.net/
http://www.alecbaldwin.com/
http://www.vodusa.com/
http://www.archiecomics.com/

3

2. HTTP Server Administration
A great deal of functionality is provided by the default HTTP server implementation.
The information presented in this section assists a system administrator with the
process of configuring and deploying a FARGOS/VISTA HTTP server that will provide
access to selected files available on the local system.

HTTP Server Configuration
A FARGOS/VISTA HTTP server is created by instantiating an object of class
HTTPdaemon. A single HTTPdaemon handles all requests for a particular site. It
is possible to have more than one HTTPdaemon within the same FARGOS/VISTA
address space, so a single FARGOS/VISTA daemon can support multiple web sites.
Organizations that provide web-hosting services may find this useful, although
running distinct FARGOS/VISTA daemons for each site eliminates the possibility of a
faulty application associated with one site affecting other customers. Hence, the
ability to run multiple sites within the same address space is most interesting when
deploying a population of FARGOS/VISTA daemons on a server farm and dynamically
configuring pools of processors to service the current needs of a particular site. See
the section on Advanced Usage for details.

There are two other services that are usually used with the HTTPdaemon. The
HTTPpurgeCache class implements a service that periodically removes obsolete
documents that were cached by the HTTPdaemon. While its use is not mandatory,
the storage taken up by cached-but-no-longer-referenced documents will not
otherwise be recovered. The HTTPcommonLogFormat class implements an
optional logging facility. The HTTPdaemon sends a message at the completion of
every HTTP transaction that indicates the resource that was requested, operation
performed, bytes sent, etc. The HTTPcommonLogFormat service organizes this
data according to the Common Log Format and writes an appropriate record.

These services are normally created in the rc file processed at the time the
FARGOS/VISTA daemon boots. The services are created in the following order:

1. HTTPcommonLogFormat
2. HTTPdaemon
3. HTTPpurgeCache

A sample rc file appears below:

HTTPcommonLogFormat /home/httpd/logs/logFile.txt www.domain.com
HTTPdaemon http.profile tcp:0.0.0.0:4321
HTTPpurgeCache 90 www.domain.com

The arguments to each of these classes are summarized below. Administrators are
encouraged to review the respective class documentation for authoritative and
current descriptions that may detail additional functionality.

HHTTTTPPccoommmmoonnLLooggFFoorrmmaatt
A record of requests made processed by an HTTPdaemon can be logged by an
HTTPcommonLogFormat object. The file name into which records are to be
written is always specified as the first argument. An object of class
HTTPcommonLogFormat registers itself as a named service, which is by default
called HTTP_LOGGER but can be further qualified if a second argument is provided.

4

The use of a qualified service name permits multiple independent web sites to reside
within the same address space.

HHTTTTPPppuurrggeeCCaacchhee
An object of HTTPpurgeCache checks to see if cached content is still valid and
requests the deletion of obsolete objects. The interval at which such checks are
performed is specified as the first argument and the unit of measurement is in
seconds. The second argument specifies the name of the web site that should be
checked. The name of the web site is derived from the value of ServerName in the
corresponding profile passed to the respective HTTPdaemon.

HHTTTTPPpprrootteecctteeddDDiirreeccttoorryy
System administrators may desire to restrict access to certain sections of the
document tree that is exported by the HTTPdaemon. The
HTTPprotectedDirectory class provides a convenient mechanism for setting up
such protected regions. The first two arguments to the create method of this class
specify the web server and section of the document tree to be protected. Anything
below the indicated point in the tree is subject to the access restrictions setup by the
HTTPprotectedDirectory object. The third argument indicates the realm
information that will be provided to web browser clients when they access the
indicated section of the document tree. Many browsers only support “Basic”
authentication and it is the default (see RFC 2617 for details on HTTP
authentication). The realm name should be some informative text that will help the
user understand to where he is providing his authentication information. An
enhanced mechanism for transmitting password data can be requested using
“Digest” mode, which is selected by specifying “digest” as the realm name. The
next argument can either be a file name specification of a password database file
(beginning with “file:”) or the user name of a user/password pair (the next
argument will be treated as a password). The use of a password database is
encouraged because it is the only mechanism to allow write methods (such as PUT,
DELETE, etc.), conveniently handles an arbitrary number of users, and permits
updates that were made by the HTTPuserAdmin service to be saved persistently.
If user/password pair information is provided as arguments to the create method,
then the entries can be permanently changed only by editing the rc file used to boot
the FARGOS/VISTA Object Management Environment process.

HTTPprotectedDirectory www.domain.com /admin “Server Administration” adminUser1
password1 adminUser2 password2

HTTPprotectedDirectory www.domain.com /admin “Server Administration”
file:/home/httpd/conf/adminUsers.db

HTTPprotectedDirectory www.domain.com /admin digest
file:/home/httpd/conf/adminUsers.db

All of the examples above protect files and services registered under /admin of the
site www.domain.com. In the first example, two permanent user Ids (adminUser1,
adminUser2) are specified along with their respective passwords. While the
HTTPuserAdmin service can be used to change the passwords associated with
these two users or remove their authorization entirely from a running system, the
changes will not be applied to the rc file, so a reboot of the system will restore the
original settings. It should also be obvious that specifying a large number of users
will be unwieldy and the password information is readily visible to anyone who can
read the rc file since it appears in the clear. This form has its uses, but is not the

http://www.ietf.org/rfc/rfc2617.txt

5

preferred mechanism for situations in which many distinct users will be granted
access to the document tree.

The remaining examples specify a password database instead of explicit
user/password pairs. When a password database is used, the HTTPuserAdmin
application has the ability to keep the database updated to reflect the addition and
removal of users or password changes. It also has the benefit that the password
information is not so obvious. The password database is processed by a
ParseParameterFile object. Passwords are placed in a “password” section and
each entry has the following format:

 username password [permittedMethod …]

An example password file appears below:

SECTION password
anonymous “-“ GET HEAD POST OPTIONS
user1 pw1 GET HEAD OPTIONS POST PUT DELETE
admin pw2 GET HEAD OPTIONS POST PUT DELETE MKCOL PROPFIND PROPPATCH LOCK UNLOCK
MOVE COPY

HHTTTTPPuusseerrAAddmmiinn
The HTTPuserAdmin class implements a convenient support class that enables
system administrators, using a conventional web browser, to add or delete user
authorizations for protected sections of a site. The password for an existing user can
also be changed. If a password database is in use by the affected section of the
document tree, its contents will be automatically updated.

HTTP Server Profile
Most of the static characteristics of a given web site are specified in a profile that is
passed to the HTTPdaemon. A sample appears below:

directoryRoot = dirName1 [dirName2 …]
ServerName = www.domain.com
ServerPort = 80
MIMEtypeFile = /home/httpd/conf/mime.types
TolerateBadHTTP11 = 1
SECTION CustomErrorPages
404 /errors/notFound.html
403 /errors/notAuthorized.html

DDiirreeccttoorryy RRoooottss
Traditionally, there is a straightforward mapping between a file stored on a local file
system and a corresponding URL reference. The FARGOS/VISTA HTTP daemon
permits multiple directories to be searched for a file of interest. One way this can
be exploited is to set up a shadow site to which modifications are applied. The
modified content under the shadow site takes precedence over the content found
under the production site tree. This permits developers to preview their changes
without requiring a complete copy of the original site.

The roots of the document tree are specified by the directoryRoot parameter and
are listed in order of decreasing precedence.

SSeerrvveerr NNaammee aanndd PPoorrtt
The official name of the server and the port at which it listens are specified as
ServerName and ServerPort respectively. If ServerPort is not specified, it

6

defaults to 80, the normal HTTP port. Following the Common Gateway Interface
convention, the value of ServerName is made available as the environment variable
SERVER_NAME and ServerPort is made available as the environment variable
SERVER_PORT.

MMIIMMEE TTyyppeess
The HTTP server always defines a small subset of key MIME types (such as HTML and
plain text); the list can be arbitrarily extended by providing an Apache-style MIME
type configuration file. The HTTP server will process an Apache-style mime.types
configuration file as-is. The MIME type configuration file is a plain text file.
Comment lines are prefixed with a “#” character. Other lines are treated as MIME
type specifications. The first field in such a line is the MIME type name. The second
and all other fields on the line are file suffixes. As an example:

image/gif gif
image/jpeg jpeg jpg
text/html html htm
text/plain txt asc
application/x-shockwave-flash swf

It is possible to specify only a MIME type name and no file suffixes. This is a
common occurrence in the mime.types file provided with the Apache web server
distribution; however, such records provide no useful information to the
FARGOS/VISTA HTTP server.

TToolleerraattee BBaadd HHTTTTPP 11..11 RReeqquueessttss
The HTTP 1.1 protocol specification asserts that conformant HTTP servers must reject
HTTP 1.1 requests that do not include a Host directive as part of the request header.
Unfortunately, some World Wide Web browsers (such as versions of Microsoft’s
Internet Explorer 4) issue malformed HTTP 1.1 requests. By default, the
FARGOS/VISTA HTTP server complies with the HTTP 1.1 specification; however, as a
practical matter, this strict conformance can be disabled to not disenfranchise those
users who have non-compliant browsers.

NOTE: FARGOS Development, LLC recommends that this option be enabled.
No known operational problem will arise from tolerating such
improperly formed HTTP 1.1 requests. Although tolerating such
problems provides no incentive against the continued use of broken
browser implementations, most web site owners are not interested in
participating in such a crusade at the expense of restricting access to
their user community.

CCuussttoomm EErrrroorr PPaaggeess
When the FARGOS/VISTA HTTP server encounters an error, such as a request for an
unknown file, it returns the corresponding HTTP error code in its response as well as
a small HTML document that purports to explain the error. Some sites may wish to
provide their own site-specific error pages. This is done by adding a
CustomErrorPages section to the site’s profile that is passed to the HTTPdaemon
object. Each line of the CustomErrorPages section specifies an HTTP error code and
the corresponding document that should be sent. The documents will be
automatically processed by the Server Side Include processor and the following
variables (in Table 1) are set in additional to the normal environment:

7

Table 1

Variable Description

HTTP_ERROR_CODE The numeric HTTP protocol error code, such as 404 for
a Not Found error.

HTTP_ERROR_CODE_TEXT The text that corresponds to the HTTP error code,
such as “Not Found”

HTTP_ERROR_MESSAGE A text message generated by the server that explains
the error in more detail, for example, what file could
not be found.

WebDAV Extensions
The HTTPdaemon can be extended with additional capabilities. A useful example is
the Web-based Distributed Authoring and Versioning (see RFC 2518) support
enabled by the WebDAVfacility class. It is normally created using a single
argument the specified the name of a profile that defines various configuration
parameters. A sample profile appears below:

directoryRoot = /tmp
collectionRoot = /tempFiles
serverName = www.domain.com
passwordFile = webdavPW.db

Note: in contrast to the profile passed to a HTTPdaemon object, the directoryRoot
attribute in a WebDAVfacility profile can specify only one directory, not multiple.
The reason for this restriction is the ambiguity that would be present when creating
new resources with PUT and MKCOL requests.

The collectionRoot attribute identifies the logical section of the HTTP servers naming
tree under which WebDAV facilities will be provided. An existing section of the tree
can be replaced. The most common and significant example is when collectionRoot
is set to “/”, which adds WebDAV capabilities to the default portions of the entire
naming tree. The password file is identified by the passwordFile entry and it is
mandatory since almost all of the WebDAV-related methods are not permitted to
anonymous users.

Only one WebDAVfacility object is normally created. It registers the WebDAV-
related HTTP extension methods, such as MKCOL, COPY, MOVE, PROPFIND, LOCK,
etc. It also creates the root WebDAVcollection object corresponding to the root of
the WebDAV-enabled document tree. There are three primary WebDAV-related
classes: WebDAVcollection, WebDAVfile and WebDAVresource.

External Interfaces
There are some external interfaces that can be used by a system administrator to
customize or effect the operation of a running site.

RReeooppeenn LLoogg FFiillee
Heavily trafficked web sites will generate log files that become unwieldy due to their
large size. The HTTPcommonLogFormat service provides a reopen method to
request that the current log file be closed and a new one be opened. To avoid
placing the system into an inconsistent state and handle recovery issues caused by
crashed servers, it is more common to first rename the current log file, then issue a

http://www.ietf.org/rfc/rfc2518.txt

8

reopen request with no argument so that the original log file name is used for the
open request. Since the log file with data was renamed, a new file will be created.
Alternatively, a new log file name can be specified. This approach works on
operating systems that prevent the renaming of open files.

The OMEinvoke utility program can be used to invoke such a request from external
process (e.g., perhaps under control of cron or some other scheduler). For
example:

$ OMEinvoke tcp:localhost:8765 HTTPlogger reopen

or

$ OMEinvoke tcp:localhost:8765 HTTPlogger:www.domain.com reopen newFileName

9

3. HTTP Server Application Programming Interfaces
While the interfaces exposed to a system administrator are limited in number and
complexity, application programmers are provided with a plethora of options. This
section discusses the FARGOS/VISTA HTTP server from a programming perspective.

Model of Operation
Each web site hosted by a FARGOS/VISTA daemon is created by the instantiation of
an appropriate HTTPdaemon object. The HTTPdaemon object processes a profile
file that describes configuration parameters associated with the site. It then creates
two objects. The first is an URLdirectory object, which handles the caching of
documents, registration of site-specific services, etc. The URLdirectory object, not
the HTTPdaemon object, is really the central object that represents the site.

The other object initially created by the HTTPdaemon is an IOobject that listens
for incoming HTTP requests. The HTTPdaemon will be notified by the IOobject
whenever a new client connection is established. At that point, the HTTPdaemon
will accept the new connection. It then creates an HTTPfastReceive object and
passes it the new connection for subsequent processing.

An HTTPfastReceive object is responsible for all requests that are sent over a
particular HTTP connection. If the client browser is using HTTP 1.0, then only one
request per established connection will be expected by default. In contrast, HTTP
1.1 connections are expected to handle multiple requests before a connection is
closed.

Once an HTTPfastReceive object has received all of the data for a given request, it
issues a loadURL request to the site’s URLdirectory object. This locates either the
previously cached contents or the handler responsible for the indicated section of the
document tree. The HTTPfastReceive object then sends the object a message
corresponding to the HTTP protocol request:

• getRequest
• headRequest
• postRequest
• putRequest
• deleteRequest
• traceRequest
• optionRequest
• extensionRequest

The extensionRequest method is used to handle arbitrary methods that are not
defined in the HTTP standard. The URLdirectory class provides a
registerNewFeature method that allows the definition of new headers and
supported methods. Perhaps the best illustration of such extensions is found in RFC
2518 (HTTP extensions for distributed authoring — WebDAV).

All of the above methods take the same argument list, as illustrated below:

HTTPcachedObject:getRequest(array requestData, assoc options,
 string replyMethodName, oid replyToObject)

The requestData array is the tokenized parse of the HTTP command issued by the
client, thus:

requestData[0] = the command, such as GET, HEAD, POST, etc.
requestData[1] = the URL of interest. URI escapes will have been translated.

http://www.ietf.org/rfc/rfc2518.txt
http://www.ietf.org/rfc/rfc2518.txt

10

requestData[2] = the protocol (e.g., “HTTP/1.0” or “HTTP/1.1”)
The options associative array contains the parse of the MIME header associated with
the command, CGI-related environment variables and extra data provided with the
request (such as form data). Note that, normally, HTTP 1.0 requests will not provide
additional MIME header data; however, some browsers request HTTP 1.1
functionality using HTTP 1.0.

Regardless of the case used by the requesting client, all of the MIME header keys are
converted to lowercase and the trailing colon is dropped. Thus “Host:” will be
converted to “host” and “Content-Length:” will be converted to “content-length”. If
an entity body is present, which will normally be the case for a POST or PUT
command, the data is made available as the “ENTITY_BODY” element of the options
associative array.

Any application that handles HTTP requests must return a result to the object
indicated by replyToObject using the method specified by replyMethodName. This is
illustrated below:

send (replyMethodName)(httpReturnCode, httpErrorText, header, entityBody)
 to replyToObject;

Note: the variable holding the method name is enclosed by parenthesis to prevent
the OIL2 compiler from parsing it as an attempted function call reference.

No value will be returned by the target method. The httpReturnCode is an integer
value corresponding to the appropriate HTTP return code. For example, 200 is OK,
404 is Not Found, etc. The httpErrorText argument is a string that provides the text
corresponding to the error code, such as “OK”, “NOT FOUND”, etc. Programmers
should review the HTTP specification (RFC 2616) to determine the appropriate return
code for their situation.

The header and entityBody arguments are strings that provide the MIME header and
body for the response. Do not include a “Connection:” directive in the MIME header
to be returned—this is handled as appropriate by the HTTPfastReceive object
based on the protocol in use, options negotiated and current loading on the server.

LLaarrggee EEnnttiittyy BBooddiieess
When working with very large entities, it is prohibitively expensive to cache the
contents in memory. For any particular host, a sufficiently large file can exist that is
too large to fit into memory, thus making it infeasible to copy the entire file into
memory. In such situations, the object Id of an IOobject can be passed instead of
a string or set of strings. The sendResult method of HTTPfastReceive will create
a SendFile object to perform the data transfer. The setDeleteOnClose method can
be used to have the open IOobject automatically deleted on end-of-file.

Document Caching
The FARGOS/VISTA HTTP server makes extensive use of document caching.
Whenever reference is made to a file under the site’s document tree, the
URLdirectory object creates an HTTPcachedFile object to read, process and cache
the file’s contents. Cached documents are registered with the respective site’s
URLdirectory object using the registerObject method. Before a request will be
forwarded to a cached object, a checkIfStillValid message will be sent to verify
that the cached contents are still valid. No arguments are passed. The cached
document’s checkIfStillValid method must return a value indicating how many

http://www.ietf.org/rfc/rfc2616.txt

11

seconds before the object is no longer valid. If the object’s contents have expired, -
1 is typically returned, but any negative value will suffice.

Cached document objects are periodically probed by the HTTPpurgeCache service,
which sends a deleteIfObsolete message. Two arguments are passed: the current
time, as obtained from getLocalRelativeTime() and number of seconds until the
next verification pass will be made.

If a cached document has expired when it receives a deleteIfObsolete message, it
un-registers itself by sending the appropriate URLdirectory object a
removeFromCache message with its object Id and aliases as arguments. The
deleteIfObsolete method returns 1 if the object is obsolete; otherwise, it returns
zero. Programmers are cautioned to remember that if the value of fromObject is nil,
no reply is expected or possible.

Access Control
A cached document may be registered under a protected section of the document
tree. All objects that register with an URLdirectory must implement a
setAccessValidator method. This method is passed one argument, which is the
object Id of a validation object to which access control queries should be sent. If the
value of fromObject is not nil, a zero value should be returned to indicate that the
information has been recorded.

When a cached document object is accessed, it should send a validateAccess
request to the validation object that was set by setAccessValidator. The data to
be passed is the authentication information provided in the HTTP header. This is
readily available as the key “authorization” in the MIME header options list. For
example:

rc = send "validateAccess" (options["authorization"]) to accessValidatorObj;

If the value returned by validateAccess is zero, access is denied.

Convenience Classes
While applications that provide HTTP-accessible services may implement all of the
necessary methods from scratch, many programmers will find it convenient to inherit
from the base class HTTPcachedObject and automatically obtain much of the
necessary behaviors. The class HTTPcachedFile inherits from HTTPcachedObject,
as does HTTPreplacedText. HTTPcachedFile is used by the URLdirectory to
read, perform and necessary processing and cached files found on the local server.
HTTPreplacedText performs a nearly identical function, with the exception that the
document’s template contents are provided as an argument instead of a file name.
It is thus very useful for caching results that were generated programmatically.

Support Functions
The FARGOS/VISTA Object Management Environment core contains many functions
that may be of use to programmers implementing HTTP-based applications. Some of
them are mentioned briefly below. Programmers are referred to the FARGOS/VISTA
Object Management Environment Programmer’s Guide for details.

12

ppaarrsseeHHTTTTPPuurriiDDaattaa
Many web-related applications identify documents using Uniform Resource Identifiers
(see RFC 2396). The parseHTTPuriData() function parses an HTTP-related URI
into its component elements.

ppaarrsseeHHTTTTPPffoorrmmDDaattaa
HTML forms are often encoded using a URL-encoding method (see RFC 1738). The
parseHTTPformData() function decodes such strings into the attribute/value pairs.

ppaarrsseeMMIIMMEEbblloocckk
Some advanced applications may need to parse multi-part MIME documents (see
RFC 2045). The parseMIMEblock() function breaks an entity body into a parsed
MIME header and the document data.

ddeeccooddeeMMIIMMEEddaattaa
The decodeMIMEdata() function decodes MIME-encoded data into its component
elements. It recognizes the following encoding methods:

• application/x-www-form-urlencoded
• multipart/form-data
• multipart/mixed

bbaassee6644TTooAASSCCIIII
Some MIME documents are encoded using the base64 encoding method (see section
5.2 of RFC 1521). This function converts a base64-encoded string into its true
contents.

Example of an HTTP-based Service
The source below illustrates how a service that processes HTML forms can be
implemented and integrated with the HTTP daemon.

global {
 const string URL_DIR_PREFIX = "/services/URLdirectory:";
 const int REDIRECT_CODE = 302; // should be 303
 const int REDIRECT_TYPE = "Moved Temporarily"; // should be See Other
 int requestCount;
}

class Local . FARGOSprocessInquiry {
 oid urlDirectory;
 string replyMethod;
 oid replyDest;
 string pageName;
 array destEmailAddrs;
 string acknowledgementPage;
 assoc formEscapes;
} inherits from Object;

http://www.ietf.org/rfc/rfc2396.txt
http://www.ietf.org/rfc/rfc1738.txt
http://www.ietf.org/rfc/rfc2045.txt
http://www.ietf.org/rfc/rfc1521.txt

13

FARGOSprocessInquiry:create(string serverName, string page, string ackPage, string
addr1)
{
 int i;

 urlDirectory = lookupLocalService(URL_DIR_PREFIX + serverName);
 if (urlDirectory == nil) {
 send "deleteYourself" to thisObject;
 exit;
 }
 pageName = page;
 acknowledgementPage = ackPage;
 for(i=3;i<=argc;i+=1) {
 destEmailAddrs[i - 3] = argv[i];
 }
 send "registerObject"(pageName, thisObject) to urlDirectory
 from nil;
 formEscapes[" "] = "%20";
}

FARGOSprocessInquiry:delete()
{
 if (urlDirectory != nil) {
 send "removeFromCache"(pageName) to urlDirectory;
 }
}

FARGOSprocessInquiry:deleteIfObsolete(int t)
{
 if (fromObject != nil) return (0); // keep always...
}

FARGOSprocessInquiry:checkIfStillValid(int t)
{
 return (1);
}

FARGOSprocessInquiry:getRequest(array requestData, assoc options,
 string replyMethod, oid replyDest)
{
 string body;
 string hdr;

 body = makeAsString("<HTML><HEAD><TITLE>Method Not Allowed</TITLE></HEAD>\r\n",
 "<BODY>\r\n<P>Method Not Allowed: ",
 requestData[1],
 "\r\n<P><HR><P><I>FARGOS/VISTA HTTP server</I></BODY></HTML>\r\n");

 hdr = makeAsString("Content-type: text/html\r\nContent-length: ",
 length(body), "\r\nConnection-close\r\n\r\n");
 send (replyMethod)(405, "Method Not Allowed", hdr, body) to replyDest;
}

FARGOSprocessInquiry:headRequest(array requestData, assoc options,
 string replyMethod, oid replyDest)
{
 string body;
 string hdr;

 body = makeAsString("<HTML><HEAD><TITLE>Method Not Allowed</TITLE></HEAD>\r\n",
 "<BODY>\r\n<P>Method Not Allowed: ",
 requestData[1],
 "\r\n<P><HR><P><I>FARGOS/VISTA HTTP server</I></BODY></HTML>\r\n");

 hdr = makeAsString("Content-type: text/html\r\nContent-length: ",
 length(body), "\r\nConnection-close\r\n\r\n");
 send (replyMethod)(405, "Method Not Allowed", hdr, body) to replyDest;
}

14

FARGOSprocessInquiry:postRequest(array requestData, assoc options,
 string replyMethodName, oid replyDestination)
{
 array formInfo, dest;
 assoc acl;
 int i, j;
 assoc condensedData;
 string key, subject, message;
 oid mailObj;

 replyMethod = replyMethodName;
 replyDest = replyDestination;

 formInfo = parseHTTPformData(options["ENTITY_CONTENT"], array);

 message = "";
 for(i=0;indexExists(formInfo, i) != 0;i+=1) {
 j = nextIndex(formInfo[i], 0);
 key = getKeyForIndex(formInfo[i], j);
 condensedData[key] = formInfo[i][key];
 message = makeAsString(message, key, " = ",
 formInfo[i][key], "\r\n");
 }

 subject = "Customer Inquiry";
 if (indexExists(condensedData, "ProductOrService") != 0) {
 subject += " re: " + condensedData["ProductOrService"];
 }
 acl = makeDefaultACL();
 mailObj = send "createObject"("SendMailViaSMTP", acl,
 "webmaster@fargos.net", destEmailAddrs, subject,
 message, thisObject) to ObjectCreator;
}

FARGOSprocessInquiry:smtpResult(int resultCode)
{
 string body, hdr;
 string text, ackPage;
 string message, title;

 if (resultCode == 1) {
 title = "Email Sent Successfully";
 text = "successfully recorded";
 } else {
 title = "Email Send FAILED";
 text = "failed to record";
 }
 message = makeAsString("We have ", text, " your inquiry.");
 body = makeAsString("<HTML><HEAD><TITLE>", title,
 "</TITLE></HEAD>\r\n<BODY><P>",
 message, "</P></BODY></HTML>\r\n");
 ackPage = makeAsString(acknowledgementPage, "?title=", title,
 "&message=", message);
 ackPage = substituteText(ackPage, formEscapes);

 hdr = makeAsString("Location: ", ackPage,
 "\r\nContent-type: text/html\r\nContent-length: ",
 length(body), "\r\nConnection-close\r\n\r\n");
 if (resultCode == 1) {
 send (replyMethod)(REDIRECT_CODE, REDIRECT_TYPE, hdr, body)
 to replyDest;
 } else {
 send (replyMethod)(500, "Internal Server Error",
 hdr, body) to replyDest;
 }
}

15

4. Server-Side-Include Processor
The native Server-Side-Include processor is implemented by the class
HTTP_SSIprocessor. The server side include processor is invoked automatically by
many HTTP-related classes when a document that contains server-side-include
directives is cached.

The server-side-include processor understands a command language whose
elements and structure were taken from that recognized by Apache’s mod_include
server-side-include module. There are some differences: not every mod_include
directive is supported and there are some additional functions available.

Web page designers can create template pages and add appropriate server-side-
include directives that cause content to be dynamically generated and inserted into
the body of documents that are sent back in response to various HTTP requests from
a client.

All server-side-include directives appear as HTML comments and begin with the
pattern:

 <!--#

The end of the server-side-include directive is terminated by the pattern:

 -->

Because the server-side-include directives are encapsulated as HTML comments, all
web site design tools will be able to read the template files. Web page designers
should ensure, however, that their tools do not drop or relocate HTML comment
directives.

IInncclluuddee aa LLooccaall FFiillee
One form of the include directive allows retrieval of a file from the local system and
its inclusion within the body of a template. While very efficient, such a directive can
be used to retrieve arbitrary files under the document tree of the server.
Unprivileged users should never be provided the opportunity to place arbitrary HTML
files under the roots of the server’s document trees.

<!--#include file=”filename” -->

IInncclluuddee RReessuullttss ooff aann HHTTTTPP QQuueerryy
A much more powerful, and arguably more secure, form of the include directive
causes an HTTP query to be issued. The response from the query is then inserted
within the body of the template.

<!--#include virtual=”url” -->

OOuuttppuutt aann EEnnvviirroonnmmeenntt VVaarriiaabbllee
Many web-based applications make the results of their computations available as
environment variables, which can then be inserted at appropriate points in a
template file. The echo directive inserts the value of an environment variable.

<!--#echo var=”varName” -->

16

SSeett aann EEnnvviirroonnmmeenntt VVaarriiaabbllee
Template pages can set environment variables to control processing of dynamically
generated queries or the time to live of a page using the set directive.

<!--#set var=”varName” value=”val” -->

SSeett aann UUnnddeeffiinneedd EEnnvviirroonnmmeenntt VVaarriiaabbllee
Sometimes a programmer only wants to set an environment variable if it has not
already been defined. Rather than use the overhead of an if-statement, the
setifnotset directive can be used to efficiently perform this function.

<!--#setifnotset var=”varName” value=”val” -->

Note: this function is not supported by Apache.

	Notice of Rights
	Trademarks
	Abbreviations
	Notice of Liability
	Introduction
	Another HTTP Server?

	HTTP Server Administration
	HTTP Server Configuration
	HTTPcommonLogFormat
	HTTPpurgeCache
	HTTPprotectedDirectory
	HTTPuserAdmin

	HTTP Server Profile
	Directory Roots
	Server Name and Port
	MIME Types
	Tolerate Bad HTTP 1.1 Requests
	Custom Error Pages

	WebDAV Extensions
	External Interfaces
	Reopen Log File

	HTTP Server Application Programming Interfaces
	Model of Operation
	Large Entity Bodies

	Document Caching
	Access Control
	Convenience Classes
	Support Functions
	parseHTTPuriData
	parseHTTPformData
	parseMIMEblock
	decodeMIMEdata
	base64ToASCII

	Example of an HTTP-based Service

	Server-Side-Include Processor
	
	Include a Local File
	Include Results of an HTTP Query
	Output an Environment Variable
	Set an Environment Variable
	Set an Undefined Environment Variable

