
Version: 7/11/2002 3:40 PM

FFAARRGGOOSS//VVIISSTTAA
Object Implementation Language 2

Reference

ii

FARGOS/VISTA Object Implementation Language 2 Reference
FARGOS Development, LLC
757 Delano Road
Yorktown Heights, NY 10598
http://www.fargos.net
mailto:support@fargos.net

Copyright  2000-2002 FARGOS Development, LLC

Notice of Rights
All rights reserved. This document may be rendered into whatever form is useful for
the user, including electronic transmission or printing, so long as the content is not
altered.

Trademarks
FARGOS/VISTA, FARGOS/SolidState and FARGOS/SolidConnection are trademarks of
FARGOS Development, LLC.

Abbreviations
FARGOS Development, LLC is a Limited Liability Company registered with the State
of New York. It is required to identify itself as such in its name, hence the “, LLC”
suffix. For purposes of readability in this document, the “, LLC” suffix is sometimes
dropped. The phrase “FARGOS Development” always denotes “FARGOS
Development, LLC” and is not intended to suggest any alternate form of
organization.

Notice of Liability
Information in this document is distributed on an “As Is” basis, without warranty.
While every precaution has been taken in the preparation of this document, FARGOS
Development, LLC shall not have any liability to any person or entity with respect to
any loss or damage caused or alleged to be caused directly or indirectly by the
instructions contained within this document or by the computer software or hardware
products described in it.

http://www.fargos.net/
mailto:support@fargos.net

iii

Contents
Introduction ..1
The OIL2 Object Model..1
Design Philosophy ..3
Language Elements ..4

Native Data Types ..4
Class Namespaces and Versions ...5
Global Variables ...5
External Functions ..6

The OIL2 Grammar...6
Comments ...6
Constants ..6

Escaped Characters..7
Documentation...7
Identifier Names...7
File Structure ...8
External Function Declarations ...8
Global Variable Definitions ...8
Declaration of Implicit Variables ...9
OIL2-implemented Functions..9
Class Definitions...9
Method Implementation...12
Method Overloading ..13
Method Aliases ...13

Method Bodies ..13
Executable Statements..13
Thread Context ..14
OIL2 Statement Reference...15

send...15
break ...16
continue ...16
exit ..16
return...17
do-while ...17
while ..17
if-else...17
for-in-do...18
for ...18
Simple Expressions ..18
Assignment expressions..19
Function call expressions ..20
Call method expressions ...20

Reserved Words...21
Index..22

1

1. Introduction
Object Implementation Language 2 (hereafter referred to as OIL2) is the
implementation language of choice for FARGOS/VISTA-based applications. OIL2 is a
high-level object-oriented programming language designed for the writing of
distributed applications.

Programs that are written in OIL2 can be compiled to an architecture neutral format
object-code (OIL2 ANF) that can be interpreted by facilities contained with the
FARGOS/VISTA Object Management. This is a convenient form for development
because compile/load/execute operations can be performed in under a second. It
also enables developers to distribute a single object file that can be executed on any
platform supported by FARGOS/VISTA. The architecture-neutral object code is
always dynamically loaded into a FARGOS/VISTA Object Management Environment.

OIL2 can also be compiled to an architecture-neutral C++ source file, which is then
compiled into the native object code for a particular CPU architecture/operating
system combination (e.g., Sun Solaris on SPARCs, Microsoft Windows NT on Intel
Pentiums) using a C++ compiler (such as g++ or Microsoft’s Visual C++). The
primary benefit of native object code is increased performance. On all platforms,
native object code can be statically linked into the respective FARGOS/VISTA
executable. If supported by the underlying host operating system, native object
code can also be dynamically loaded into a FARGOS/VISTA Object Management
Environment in the same fashion as the architecture neutral object code.

OIL2 is an easy-to-learn language. Historical results with its predecessor (OIL)
demonstrated that programmers with little prior experience with C were able to pick
it up and start writing surprisingly sophisticated (e.g., fault-tolerant, distributed)
applications within an afternoon. Novice programmers may find the tutorial
document An Introduction to Programming using OIL2 of interest. Many illustrative
classes are found in FARGOS/VISTA Examples.

OIL2 is a language intended to enhance programmer productivity. Towards that
end, it is concise without being obscure and shares a syntax and control structures
that will be familiar to C programmers. While suitable for building conventional
applications, its inherent power is most evident when building distributed
applications. The design of OIL2 also pays attention to the elimination of much of
minutiae of common programming tasks, which are all too easy for a programmer to
get wrong. For example, advanced native data structures, such as sparse arrays,
associative arrays and sets, eliminate the need for many table maintenance routines.
All storage is dynamically allocated as needed and freed when no longer referenced
without requiring explicit direction by the programmer. This eliminates common
problems, such as buffer overflow and memory leaks, that plague many programs
and contribute unreliable and insecure operation.

All OIL2 data is also tagged, enabling a program to inquire as to the type of a
variable at runtime and take appropriate action. Coupled with other facilities in the
FARGOS/VISTA Object Management Environment, this provides OIL2 programs with
a self-describing environment.

2. The OIL2 Object Model
Strictly speaking, the name Object Implementation Language 2 is a bit of a
misnomer: programmers actually write class definitions and their associated
methods whereas an object is an instance of such a class. A more proper name

2

would be Object-oriented Implementation Language 2. Luckily, that too would be
called OIL2.

Object-oriented programming languages have been available since the late 1960’s,
but widespread recognition of their benefits did not take hold until the mid 1980’s.
As a rule, object-oriented models provide a separation between the interface to data
structures and the implementation of the algorithms that manipulate that data.
Individual object-oriented programming languages enforce this separation to various
degrees by the constructs provided in the language. Some languages are very lax
and provide the opportunity for object-oriented programming but do not require its
use (C++ is a good example since it is, in practice, a superset of ANSI C). At the
other extreme, some object-oriented languages enforce a pure, pristine object-
oriented model.

OIL2 strives to implement an object model that is firmly rooted in theory, with the
result being simple, consistent and yet powerful. Many of the rules that define the
foundation of the OIL2 object model will be familiar to programmers who have
previously been exposed to other object-oriented languages.

• A class defines both the variables that represent the state of a particular
object (these are called instance variables) and the operations that can be
performed against objects of a particular class (these operations are called
methods).

• A class is uniquely named by three elements: a name space, the class name
and a version Id.

• A class can inherit from one or more classes. The classes from which it
inherits are called its base classes. From the perspective of its individual base
classes, it is considered a derived class. The terminology of super- and sub-
class is also commonly used; however, this document will use the terms base
and derived as an aid to clarity since the similarity of the prefixes super and
sub can create confusion when read quickly.

• A class must inherit from the base class Object. This can either be explicitly
stated or implied as a property of inheriting from another base class that in
turn eventually inherits from the class Object. Note that this requirement
means that the implementation of the class Object cannot be expressed in
OIL2 (nor can the class Thread).

• Every class must have both a create and a delete method. While most
classes have more methods, it is entirely possible to have a useful class that
only implements these two methods.

• An object is said to be an instance of a class. It is a distinct collection of
variables as defined by the class definition.

The rules above pertain to the static nature of class definitions. The OIL2 object
model also includes operational aspects, some of which are unconventional:

• Every object is identified by a globally unique identifier. This unique identifier
is referred to as an object Id. Globally unique means across all machines, not
just the address space into which the object is born.

• Two objects can only interact through the sending of a message. OIL2 does
not permit the use of pointers and thus the direct manipulation of another
object's instance variables. In OIL2, a message is sent using the send
statement.

• In general, when a message is received for an object, the indicated method is
executed. This process is called a method invocation. The indicated method
may have a null body, which means that no code is to be executed. The
delete method of many classes has this characteristic.

3

• If an object's method body is not null, then its execution is performed by a
separate thread. This means that the runtime environment of OIL2 objects is
one in which parallelism is supported at a fine level of granularity, namely
that of a method invocation. If compared to conventional environments, this
would correspond to a separate thread of execution being spawned for each
function call.

• By default, only one method can be active on an object at a time. This
restriction enforces safe behavior by default and prevents race conditions, a
common issue in multi-threaded environments. Except in very complex
cases, programmers need take no action to disable the default behavior, but
this capability is available.

• If more than one method is active against an object, the other method cannot
proceed until the currently active method is suspended. Again, the default is
to enforce safe behavior and prevent race conditions, but this can be
overridden.

For any language, actual programs execute within an environment that provides
facilities beyond those declared by the language. For example, OIL2 programs run
within a FARGOS/VISTA Object Management Environment and can take advantage of
features such as reflection and persistence.

3. Design Philosophy
The design of OIL2 was influenced by experience gained from its predecessor; it
retains the goals of that language. One of those goals was to permit independent
programmers to cooperate in the building of complex distributed systems without
requiring close synchronization of their efforts. Another is to provide a significant
boost in programmer productivity (6 to 10-fold improvements were seen with OIL).
One means to that end is to assist in the construction of robust systems and the
elimination of details that often, while trivial, are overlooked or incorrectly
implemented1. Like OIL, the most important philosophical design decision enforced
in OIL2 is that methods are the only external interfaces to an object.

This has far-reaching implications. One is that a derived class does not have direct
access to the instance variables of a base class2. An immediate benefit from this is
the avoidance of the fragile base class syndrome, in which derived classes that make
use of a base class must be recompiled after any non-trivial modification is made to

1 For example, a common cause of program crashes or opportunity for system
penetration by hackers is the use of inherent predefined limits on the size of an array
or a string buffer. Often in languages like C/C++, the size of an array is fixed at
compile time to be of a size that the programmer "knows" is large enough. Then
when the program encounters a situation not anticipated by the programmer, it
crashes or the overflowed buffer can be used to insert new instructions on the
thread’s stack. OIL2 does not have limits on arrays, strings, etc. declared, so these
sorts of issues cannot occur. Another common case is the issue of dynamically
allocating and freeing memory. Within an OIL2 method body, memory is implicitly
allocated as needed and the freeing of storage is performed automatically.
Consequently, OIL2 has no equivalent to C++'s new and delete operators.
2 In C++, this would be the equivalent of saying that all member variables are
declared to be private. After many years of use, direct access to specific variables
of a base class was added to OIL. This clear violation of a governing design principle
was made for performance reasons. OIL2 currently remains "pure" in this aspect
because the sophistication of the underlying FARGOS/VISTA runtime avoids much of
the overhead that was circumvented by this extension to OIL.

4

the source of the base class. Another is that a cooperating group of programmers
does not need to exchange header files, much less keep them synchronized.

4. Language Elements
Before the OIL2 grammar is described, it is useful to have an understanding of some
of the runtime environment issues.

NNaattiivvee DDaattaa TTyyppeess
OIL2 has several native data types that are used to hold data in global, local and
instance variables. The type keywords and a description of each native type appear
in Table 1.

Table 1

Keyword Type Comments

nil A null value A special value to indicate no value

int

int32

32-bit
integer

A normal integer; int and int32 are synonymous.

int64 64-bit
integer

Sometimes, 32 bits are not enough.

float 32-bit
floating point

Single precision floating point.

double 64-bit
floating point

Double precision floating point.

fixed Fixed point
decimal

Arbitrary precision arithmetic, useful for currency.

string Octet string Can contain embedded nulls; also keeps track of
character set (e.g., ASCII, EBCDIC, Unicode, binary); the
reference counted implementation in FARGOS/VISTA
makes it very inexpensive to pass strings around since no
data copying occurs.

oid Object Id Reference to an object.

array Sparse array Can be subscripted by non-contiguous int32 values;
reference counted implementation in FARGOS/VISTA.

assoc Associative
array

Subscripted by strings (binary data OK); reference
counted implementation in FARGOS/VISTA.

set Set of
elements

Really a list that preserves order; reference counted
implementation in FARGOS/VISTA.

nlm Native
Language
Message

Internationalized and machine-readable messages;
referenced-counted implementation in FARGOS/VISTA.

any Any type Any of the above types can be used.

5

A collection of related variables are normally placed together in a class; in simple
situations, they may be bound together in a structure:

structstructstructstruct [structTypeName] {{{{ variableDeclarationList }}}} [identifierList];

The individual elements of a structure are selected using a "...." operator:

struct example {
 int var1;
 float var2;
} s;
int i;
float j;

i = s.var1;
J = s.var2;

CCllaassss NNaammeessppaacceess aanndd VVeerrssiioonnss
All OIL2 classes are uniquely identified by three elements: a namespace, a class
name and a version Id. A namespace is a somewhat arbitrary text name and is used
to prevent name collisions between classes. There are a small number of predefined
name spaces:

Namespace Description

Standard Reserved for FARGOS/VISTA classes in the Object Management
Environment core.

Local Suggested default name space for OIL2 classes.

An organization can keep classes that it develops within their own namespace and
thus prevent unintended collisions with classes developed by other organizations.
Exploitation of this feature can also permit a site to deploy classes that effectively
replace the implementation of standard classes. It is recommended that when
developing production-quality code, programmers should explicitly specify a
namespace instead of using the default.

OIL2 also provides support for environments that utilize persistent objects by
recognizing that class implementations may need to be altered over time while old
data is retained. This capability is supported in part using version Ids. Each class
implementation has a unique version Id associated with it. The FARGOS/VISTA
Object Management Environment permits more than one implementation of a given
name space/class name to simultaneously exist. If a version Id is not explicitly
specified in a class definition, the OIL2 compiler generates one automatically. If a
class may be used by objects that will be persistent, it is a good idea to explicitly
specify the class version Id rather than let the OIL2 compiler create one
automatically.

GGlloobbaall VVaarriiaabblleess
OIL2 supports global variables that are local to a FARGOS/VISTA Object Management
Environment process. These can be used to achieve effects similar to variables
declared as static in C++ classes. Normally, global variables are visible only to the
methods declared in a single source file; however, a collection of variables can be
assigned a name and subsequently be visible to methods in more than one file. This
is similar to named COMMON sections in Fortran. It should be noted, however, that
explicitly named sections incur more overhead than unnamed sections and should be
used only when necessary.

6

EExxtteerrnnaall FFuunnccttiioonnss
OIL2 permits functions written in C++ to be called from OIL2 method bodies. Such
functions need to be declared before they are referenced. OIL2 supports two calling
conventions: the conventional form handles a fixed number of arguments and the
other permits the passing of a variable number of arguments. This is discussed in
more detail below (see External Function Declarations).

IInncclluuddee FFiilleess
The OIL2 compiler can include files using the %include directive. A %include
directive must appear at the beginning of a source code line. It intentionally has the
same form as the C preprocessor #include command:

 %include <fileSuffix> // searches for file using a predefined list of
directories
 %include "fileName" // uses the specified file name as-is

The standard directories searched by a file included using the “<fileSuffix>” form
are:

• The list of directories specified by the OIL2_INCLUDE_PATH environment
variable.

• The current working directory
• The directory specified by $VISTA_ROOT/oil2Include, where $VISTA_ROOT is

root of the distribution tree which is defined by the value of the VISTA_ROOT
environment variable.

5. The OIL2 Grammar

CCoommmmeennttss
As in C++, comments can be placed in OIL2 source code by two means. The first is
by prefixing the comment with the character sequence "//". The remainder of the
line is treated as a comment. The second approach is a block comment and is
introduced with the character sequence "/*". The end of the block comment is
indicated by the character sequence "*/".

CCoonnssttaannttss
OIL2 supports several kinds of constants.

Table 2

Type Specification

base 10
integer

A sequence of digits

base 16
integer

0x followed by a sequence of hexadecimal digits

floating
point

An optional sequence of digits, then a period followed by a sequence of
digits

fixed point A “$” followed by an optional sequence of digits, then a period followed
by a sequence of digits

7

Type Specification

string a double quote mark, any number of characters, another double quote
mark. A double quote can be escaped by a backslash. Strings may
contain escaped characters.

integer a single quote, a character, another single quote. The character may
be escaped.

Escaped Characters
The OIL2 compiler recognizes several escaped characters within the body of a string
or character constant. These are detailed in Table 3.

Table 3

Escape
Sequence

Meaning

\n Line Feed

\r Carriage Return

\t Tab

\f Page Feed

\” Double quote mark

\’ A single quote
mark

DDooccuummeennttaattiioonn
In 1992, the OIL grammar provided explicit support for inline documentation of
classes. The original OIL compiler output documentation in a variety of formats:
Unix man pages, IBM’s BookMaster SGML, Adobe’s FrameMaker MIF, Microsoft’s Rich
Text Format, and Hyper Text Markup Language (HTML). At the current time, support
for HTML has been widely implemented in most publishing applications, so it has
been adopted as the internal markup language for OIL2 documentation.
Documentation blocks in OIL2 source code are introduced by the three-character
sequence “/*!”and terminated by a corresponding reversed character sequence of
“!*/”. One documentation block can appear per class definition or method.

IIddeennttiiffiieerr NNaammeess
OIL2 identifier names are constructed as a sequence of one or more alphanumeric
characters. The initial character must be either a letter (uppercase or lowercase) or
one of the three special characters "_", "$" or "@". Subsequent characters can also
make use of the digits 0-9. OIL2 does not prescribe any limit on the length of an
identifier, but individual compiler implementations will often impose a practical limit,
such as 16383 characters (which is over 200 screen lines of solid text and the
difficulties in locating a typographical error in a variable name containing more than
16,000 characters should be readily apparent).

8

FFiillee SSttrruuccttuurree
An OIL2 source file is composed of zero or more blocks. Blocks can appear in any
order, however, a block must appear before its contents are referenced. The various
blocks are, in suggested order of appearance:

Block
Type

Description

External Declares external functions (e.g., that are written in C++)

Global Defines a collection of global variables and constants

Implicit Defines a set of variables and constants that should be implicitly
defined for every method body

Function Defines a function written in OIL2

Class Defines a class

Method Defines a method of a class

Each of the blocks is described below.

EExxtteerrnnaall FFuunnccttiioonn DDeeccllaarraattiioonnss
OIL2-callable functions that are external to the source file are declared in an
external block. Most functions take a fixed number of arguments and they are
defined as illustrated by the prototype below:

external typeName functionName ([typeName [parameterName] [, typeName
[parameterName]] …);

The specification of a parameter name is optional; however, an OIL2 compiler can
use this information to provide error messages that are easier to understand. Unlike
many languages, OIL2 makes it very easy to write methods that take a variable
number of arguments. It also supports functions that do the same. Functions that
take a variable number of arguments are defined in a fashion similar to that of their
fixed position brethren, with the exception that the parameter list is an ellipsis (a
sequence of three periods):

external typeName functionName (…);
The external keyword may also be abbreviated as extern, which is identical to the
C/C++ keyword. Some examples appear below:

external int typeOf(any)
extern int registerService(string serviceName, oid object, int exportable);
external string makeAsString(...);

GGlloobbaall VVaarriiaabbllee DDeeffiinniittiioonnss
Variables that are to be global to the methods in the source file are defined in a
global block. Normally, global blocks are unnamed and the global variables defined
are visible only within the source file. The result is very similar in effect to variables
declared as static in the C programming language. OIL2 also make provision for a
block to be given a name and thus be visible to code from multiple source files.
Used in this fashion, the result is much like named COMMON blocks in Fortran. The
syntax is illustrated below:

global [globalBlockName] { variableAndConstantDeclarations };

9

An example global declaration appears below:

global {
 const string srcID = "Id";
 int totalCount;
};

DDeeccllaarraattiioonn ooff IImmpplliicciitt VVaarriiaabblleess
For convenience, variables can be defined as implicit. This enables a programmer
to avoid the need to explicitly define commonly used variables in the body of each
method. This capability is only useful if a consistent coding convention is followed.
The syntax is similar to that of a global block, with the exception that no name for
the block is permitted.

implicit { constantAndVariableDeclarations };
An example follows:

implicit {
 int rc;
};

OOIILL22--iimmpplleemmeenntteedd FFuunnccttiioonnss
Functions that are implemented in OIL2 instead of C++ are described in a function
block. NOTE: the current release level of the OIL2 compiler does not support this
feature. Use a method body instead and call it.

NNaammeedd CCoonnssttaanntt DDeeffiinniittiioonnss
A constant can be assigned a name by declaring it within a global block, implicit
block or method body. Most constants are declared using a const statement:
const identifierName = constantExpression;
A special form of constant is an enumerated list, which is defined by an enum
statement:

enum [enumName] { identifier1 [= integerExpression] [, identfier2 [= integerExpr]
…] };

By default, the first identifier in the list is assigned a value of 1; each subsequent
identifier is assigned a value one greater than its predecessor. Any given element
can be assigned a specific value using the optional “= constantExpression” clause.
There is a second form of the enum statement that is convenient for declaring bit
masks:

enum set enumName { identifier1 [, identifier2 …] };
Each identifier will automatically be assigned a value that corresponds to a distinct
bit position.

CCllaassss DDeeffiinniittiioonnss
A class is defined in a class block. The information provided by a class definition
includes the name of the class, the classes from which it inherits and a description of
the instance variables for each object of the class. It is also possible to define class-
specific constants that are only visible within the scope of the methods of the class.
A class definition is illustrated below:

[unique] class [nameSpace .] className [(versionID)] {
 constantAndVariableDeclarations

10

} inherits from [nameSpace1 .] class1[(versionID)] [, [nameSpace2 .]
class2[(versionID)]] … ;

While not mandatory, it is recommended that programmers provide the desired
name space of the new class. If not specified, the OIL2 compiler will generate a
default name space, which is typically Local. The version of the new class can also
be specified. This is very useful for classes that might be used with persistent
objects (e.g., see class PersistentObject). If a version Id is not specified, one is
automatically generated.

The inherits from clause specifies the classes from which a new class inherits. At
least one class must be specified; usually this is Object. An inherited class can be
qualified with a name space prefix and a version Id suffix. If the name space is not
specified, the name space will be determined at runtime. If a version Id is not
specified, the most recent version of a class will be used.

The class definition can be prefix with the keyword unique. This declares that a
unique set of instance variables should be maintained for each derived class that
inherits this class. This only becomes an issue with multiple inheritance and can be
illustrated by an example. Suppose class B inherits from A; class C also inherits
from A; and new class D inherits from both B and C. The question is: should D have
one or two copies of the instance variables associated with class A?

The default answer is one and the resulting inheritance graph would visually appear
as a diamond, as illustrated in Figure 1.3

Class B Class C

Class A

x

1

x

1

Class D

x

1

x

1

Figure 1

3 For C++ programmers, this is equivalent to having all base classes declared as
virtual.

11

Most applications will work fine with this compression. If, however, one attempts to
write a class that offers services to a derived class and assumes that it will be only
used by one such class, it will fail when two or more classes within the same
inheritance tree attempt to make use of the service. A trivial illustration would be a
class that implemented a link in a chain of items. If written so that it only
participated in one chain, having two derived classes try to use it at the same time
would be a disaster. This demonstrates the need for one to sometimes to have a
unique copy of a base class for the derived classes that use it. This is enabled by the
use of the unique keyword and the resulting inheritance graph looks like a wedge,
as illustrated in Figure 2.4

Class A

Class B

Class D

Class C

Class A

x

1

x

1

x

1

x

1

Figure 2

It is worth nothing that the specification of unique is provided by the class
implementer, not the user of a class. This is one aspect of isolation of the
implementation details of a class from the users of said class.

If the name space for the class is not defined, it defaults to a value defined by the
OIL2 compiler. Typically, this is "Local"; however, it is quite reasonable for an OIL2

4 This is a case where OIL2 is 180-degrees opposite from C++. In C++, you have to
explicitly denote that a base class should have only one instance in the inheritance
hierarchy; by default, you would get unique copies for each derived class that made
use of it.

12

compiler to permit the default value to be overridden by a command line argument
or via a site-specific profile.

A complete, albeit imaginary, example appears below:

class Local . Demo (1) {
 const string serviceName = "/SomeService";
 const float PI = 3.14;
 int count;
 oid clientObj;
} inherits from AnotherClass(1), Object;

MMeetthhoodd IImmpplleemmeennttaattiioonn
Each method implementation appears in a method block. A method of a given class
must appear in the file at some point after the declaration of the class. Method
blocks are one of the most complicated constructs because their primary purpose is
to contain executable statements that detail the logic of an application. The
presence of such executable statements is a significant way in which OIL2 is
distinguished from the plethora of Interface Definition Languages (IDLs)—the
method itself is defined, not just a prototype.

A method block appears similar to the following:

[nameSpace .] className [(version)] : methodName (argumentListPrototype)
[unique] { methodBody }

In practice, the nameSpace and class version Id parameters are left off and the
compiler uses the class name alone to determine to which class the method belongs;
the name space and version Id of the most recently defined class of the indicated
name in the source file are used as implied values. Full qualification of the class
name would be used in a situation where more than one class with the exact same
name is implemented in the same source file. Such a scenario would be rare indeed:
most developers, if forced to maintain two versions of the same class, would tend to
work with two separate source files.

The argument list prototype is a comma-separated list of type name/parameter
name pairs:

[[optional] typeName [parameterName] [, [optional] typeName
[parameterName]] …

Here, OIL2 differs from most languages in that all of the arguments to a method are
always made available via two predefined variables. The integer variable argc
contains a count of the arguments passed to the method. The arguments themselves
are available as elements of the array variable argv, starting with subscript 0.
Providing the type of a method argument instructs the compiler as to what is
expected and adding a name for the argument allows it to be conveniently
referenced as a variable by code within the body of the method. A type declaration
can be prefixed with the keyword optional, which serves as a hint to both the
compiler and users that the indicated parameter is not always passed. The name of
a parameter is really an alias for the corresponding subscripted element of the argv
array.

An example appears below:

13

Demo:method1(int arg1, string arg2, optional float arg3)
{
 int j, k;
 // variable declarations here…
 // body of method here…
 j = arg1;
 k = argv[0];
 // j and k reference the same data
}

MMeetthhoodd OOvveerrllooaaddiinngg
Normally, an OIL2 class has only one implementation corresponding to a particular
method name. This is in keeping with the prior practice of OIL. OIL2, however, also
supports overloading of methods that is common in other object-oriented languages
that do not have the ability to determine the type of an argument at runtime. If
method overloading is used, the actual method to be invoked will depend not just on
its name, but also on the type of the arguments passed at runtime. Method
overloading is selected by appending the keyword unique after the method’s
argument list.

MMeetthhoodd AAlliiaasseess
Sometimes a method’s implementation is identical or nearly identical to an existing
method. Rather than implement a duplicate method body, a new method can be
declared an alias for an existing method of the class. This not only reduces the
programmer’s effort required to develop and maintain an extra method, but it also
reduces the size of the object file since only one copy of the function code is needed.

[nameSpace .] className [(version)] : methodName (argumentListPrototype)
[unique] alias for originalMethodName ;

The usage is illustrated below:

Demo:method2(int arg1, string arg2) alias for method1;

Note: the code within a method body can examine the thread context variable
thisMethod to determine the name by which the method was invoked.

Method Bodies
OIL2 method bodies are composed of a set of statements, which can be either
declarative or executable. Declarative statements declare things, such as the type
and name of a variable or the value of a constant. Executable statements specify an
action to be taken, such as the computation of a result or a transfer of the flow of
execution. Declarative statements can appear in the bodies of many of the blocks
described that have been described above, but executable statements can normally
only appear within the body of a method or function5. A semicolon always separates
one statement from another. Braces are used to enclose statement blocks and
introduce a new naming scope.

EExxeeccuuttaabbllee SSttaatteemmeennttss
Executable statements in OIL fall into several broad groups:

• the computation of results, more formally referred to as expressions

5 The exception is a constant expression: the value of a const declaration can be a
simple expression.

14

• looping constructs, such as the various forms of the for-statement, the
while- and do-statements and support statements like break and continue.

• conditional execution, best illustrated by the if-else statement.
• inter-object communication performed by the various forms of the send-

statement.
In OIL2, an expression alone can sometimes be a statement but a statement is never
an expression. A common example of an expression-as-a-statement would be a
function call where the returned result is ignored. The operation of assignment,
which is treated as a statement in many languages, is treated in OIL2 as an
expression. Like in C, this permits usage such as:

 a = b = c = 0;

Technically, this means that the common construct:

 j = 0;

can also be viewed as an expression whose result is ignored.

TThhrreeaadd CCoonntteexxtt
In the OIL2 object model, every method executes as a separate thread. Each thread
is provided with several predefined variables, which are detailed in Table 4.

Table 4

Variable Name Type Description

argc int The number of arguments passed to method, zero
indicates none were passed.

argv array Array of arguments to method, first parameter in
subscript 0.

thisMethod string The name of the executing method.

threadContext assoc Associative array of environment variables

userInfo assoc Id of user

thisObject oid Object Id of the object upon which the method is active

fromObject any Object Id or service name of the object from which the
message was sent; nil if no reply is desired

thisThread oid Object Id of the active thread

threadErrorCode any Thread-specific error information

$replyResult any Refers to the result from an RPC-style method
invocations; not normally referenced directly.

ObjectCreator oid Object Id of the ObjectCreator object

The arguments to each thread are always made available as the predefined variables
argc and argv.

The OIL2 compiler also predefines some constants:

Constant Name type Description

15

emptyAssoc assoc an empty associative
array

emptyArray array an empty sparse array

emptySet set an empty set

nil nil a nil value

In addition, the various type names, which are keywords, can also be used wherever
an integer constant is valid. These are most often used when comparing the result
of the typeOf() function. For example:

 if (typeOf(x) == string) { // then it's a string
 display("It's a string\n");
 else if (typeOf(x) == float) {
 display("It's a floating point number\n");
 }

OOIILL22 SSttaatteemmeenntt RReeffeerreennccee

send
The send statement is used to send a message to another object. Normally, this
results in a method being invoked on the target (this might not happen for a few
reasons, including a null method body—nothing interesting to do—or the indicated
method does not exist). There are two forms of the send statement, the basic
primitive and an RPC-style invocation.

 send methodName[([argumentList])] to destinationObject [from
fromObj] [in timeoutSeconds]

There are two mandatory elements of the send statement. The first is the method
name and the second is the destination object. Both of these are expressions that
can be computed at runtime. This has far-reaching implications and yields
unprecedented flexibility. While in practice the vast majority of method names are
specified as constants, an application can generate the name of the method it wants
to invoke by performing any arbitrary computations it needs.

While optional, most method invocations will include some data as arguments. The
argument list is computed at runtime as a set expression using the union operator
(|) between each comma-separated expression. This novel characteristic makes it
trivial to manipulate and construct argument lists at runtime. This is quite different
from many programming languages. While many programmers might never have
written a function capable of taking a variable number of arguments and their sole
experience with variable argument functions might be only the printf* family of
functions, OIL2 programmers make use of variable argument lists frequently because
of their ease of use.

Note: if an argument list expression is a set, it is expanded into its individual
elements due to the use of the union operator. Thus, if a set needs to be passed as
a positional argument, it should be first encapsulated in an empty set using the
addition operator:

 set argList, s1;
 s1 += 1;
 s1 += 2;
 argList = emptySet + s1; // encapsulate set
 send “doSomething”(argList) to destObj;

16

The destination object may be specified using an object Id or it can be a string that
corresponds to the name of a registered service.

A method invocation can be made to appear as if it came from another object using
the from clause. By convention, if one does not want a result returned from a
method, the from clause should be used with a value of nil specified as the fromObj.
This is not always necessary, as some methods are written to not return results, but
it is good form. When using the simple form above, if the from clause is not used,
the value of fromObj defaults to that of thisObject.

There is also a second form of the send statement that is used to make Remote
Procedure Call-style method invocations. It is almost identical in appearance:

 lval = send methodName[(argumentList)] to destinationObject [from
fromObj] [in timeoutSeconds]

The significant difference is that there is an assignment into a variable specified.
With this form, the method invocation takes places as normal, but the thread is put
to sleep and waits for a result to be returned. After the result is obtained, the thread
is woken up and the value is stored in the location indicated by lval. While the from
clause is supported in this RPC-style form, its use will provide correct results only
under very special conditions created by expert programmers. When an RPC-style
form of the send statement is used, the value of fromObj defaults to that of
thisThread instead of thisObject.

NOTE: while recognized and used by the OIL2 compiler, support for the timeout
parameter is currently not implemented by the FARGOS/VISTA Object Management
Environment.

An RPC-style send performs functionality that is logically equivalent to the following
sequence of statements:

 sleepingThread = thisThread;
 sendsendsendsend methodName((((argumentList)))) totototo destinationObject fromfromfromfrom thisThread;
 sendsendsendsend “suspendThread” totototo thisThread;
 sval = $replyResult;

The class Thread implements a highly optimized implementation of the reply
method that performs functionality similar to:

Thread:reply(anyanyanyany result)
{
 $replyResult = result;
 send “resumeThread” to sleepingThread;
}

break
The break statement forces an immediate exit from the innermost for/do/while
loop.

continue
The continue statement cause an immediate jump to the top of the innermost
for/do/while loop. It is used to immediately start the next pass through a loop.

exit
The exit statement causes an immediate termination of the current thread. An
implicit exit takes place whenever the flow of execution reaches the bottom of a
method. No value is return from the method—if this is desired, a return statement
must be used.

17

return
The return statement returns a value from a method and terminates the thread. It
takes the following form:

 return (expression)
Note: the parentheses are mandatory, unlike C/C++. If a method is to not return a
value, the exit statement should be used instead.

The actual behavior of this statement differs based on whether or not the method
was invoked by a send statement or called as a function by a call statement. If
invoked via a send, then the return() statement essentially performs the following:

 ifififif (fromObject != nilnilnilnil) sendsendsendsend "reply"(expression) to fromObject;
 exitexitexitexit;

Note: if the value of fromObject is nil, then the send of the reply method is not
performed.

If the method was executed as the result of a call, the behavior is more like that of a
conventional return from a function: the result to be returned is placed at the
appropriate place on the calling thread's stack and the flow of execution is returned
to the caller. In this case, the active thread is not terminated because the flow of
execution needs to continue in the context of the caller.

do-while
The do-while statement is a looping construct that makes one pass through the
statements to be executed and then evaluates a condition that determines if another
pass should be performed.

 do statement while (expression)
Note: The parentheses around the conditional expression are mandatory. If the
conditional expression evaluates to a non-zero value, the statement will be executed
again. If a break statement is encountered, the loop will be exited. If a continue
statement is encountered, the flow of control will pass to the bottom of the loop,
where the conditional expression is reevaluated.

while
The while statement is a looping construct that first evaluates a condition that
determines if a pass should be performed through a block of statements.

 while (expression) statement
Note: the parentheses around the conditional expression are mandatory. If the
conditional expression evaluates to a non-zero value, the statement will be executed
again. If a break statement is encountered, the loop will be exited. If a continue
statement is encountered, the flow of control will pass to the top of the loop, where
the conditional expression is reevaluated.

if-else
Statements can be conditionally executed with the if-else statement.

 if (conditionalExpression) statement1 [else statement2]
Note: the parentheses around the conditional expression are mandatory.

18

for-in-do
The for-in-do statement performs iteration over a set in OIL2.

 for lval in setExpression do statement
The variable indicated by lval is set to the first element of the set and the statement
block is executed. Subsequent passes are made with the variable having been set to
the value of the second, third, etc. element in the set. When either all of the
elements in the set have been processed or a break statement is encountered, the
flow of execution proceeds to the next statement. A continue statement will stop
execution of the current pass, retrieve the next variable and start the next pass.

for
This form of the for statement is a convenient way to express many looping
situations and will be familiar to C/C++ programmers.

for(initialStatement;conditionalExpression;afterEachPassStatement) statement
The initialStatement is always executed once, then the conditionalExpression is
evaluted. If the result is non-zero, then the statement block is executed. When this
is complete, the afterEachPassStatement is executed and the flow of control passes
back to the top of the loop where the conditionalExpression will be reevaluated.

If a break statement is encountered, the loop will be exited. If a continue
statement is encountered, the flow of control will pass to the
afterEachPassStatement and then back to the top of the loop.

Simple Expressions
Simple expressions are represented by constants and the result of operators, such as
addition and subtraction. The full lists of operators are provided in Table 5 and Table
6.

19

Table 5

Operator Meaning Comments

+ Addition String concatenation, set
insertion

- Subtraction Set removal

* Multiplication

/ Division Set removal

% Remainder module N

mod Remainder modulo N Same as “%”

& Logical AND Remove elements not in set

| Logical OR Set union

^ Exclusive OR

&& Conditional AND

and Conditional AND Same as “&&”

|| Conditional OR

or Conditional OR Same as “||”

< Less than

> Greater Than

== Equal to

!= Not equal

<= Less than or equal to

>= Greater than or equal
to

! Unary negation

not Unary negation Same as “!”

Assignment expressions
Beyond the simple assignment operator, several shorthand operators update a
variable in place.

Table 6

Operator Meaning
= Assignment

+= Add and assign

–= Subtract and assign

*= Multiply and assign

20

Operator Meaning
/= Divide and assign

%= Modulo remainder and
assign

&= Logical AND and assign

|= Logical OR and assign

^= Logical XOR and assign

Function call expressions
OIL2 supports two calling conventions for external functions. One style takes a fixed
number of arguments. In this conventional style, each comma-separated argument
must correspond to a declared parameter of the function. The alternate style
permits the use of a variable number of arguments. While normally not viewed any
differently than the fixed number of argument style, argument lists that support a
variable number of elements can be built up programmatically using sets. The
semantics for a function taking a variable number of arguments is identical to that of
the argument lists for the send and call statements.

Call method expressions
One interesting aspect of OIL2 methods is that they can also be called as functions.
This is done using a call statement.

call methodName [(argumentList)]
As in the send statement, the methodName is an expression, which allows an
arbitrary method to be called at runtime. The argument list is a set expression,
which again permits its computation at runtime.

 var = call "method1"(1, 2, 3);

21

6. Reserved Words
alias
and
any
array
assoc
break
call
case
class
const
continue
default
do
double

else
extern
external
exit
for
fixed
float
from
global
if
implicit
in
int
int32
int64

mod
nlm
not
oid
optional
or
return
set
send
string
switch
to
unique
while

22

7. Index
$replyResult. See Thread Context
%include directive, 6
alias for, 13
argc. See Thread Context
argv. See Thread Context
assignment operators, 19
call, 20
class definition, 9
class version Id, 5
comments, 6
const statement, 9
constants, 6
documentation, 7
emptyArray. See Predefined constants
emptyAssoc. See Predefined constants
emptySet. See Predefined constants
enum statement, 9
environment variable

OIL2_INCLUDE_PATH, 6
VISTA_ROOT, 6

escaped characters, 7
extern. See external
external, 8
from clause, 16
fromObject. See Thread Context

functions, 20
global, 8
global variables, 5
implicit, 9
inherits from, 10
method overloading, 13
native data types, 4
nil. See Predefined constants
ObjectCreator. See Thread Context
OIL2_INCLUDE_PATH environment

variable, 6
operators, 19
Predefined constants, 14
predefined name spaces, 5
Predefined variables. See
thisMethod. See Thread Context
thisObject. See Thread Context
thisThread. See Thread Context
Thread Context, 14
threadContext. See Thread Context
threadErrorCode. See Thread Context
unique

inheritance, 10
method, 13

userInfo. See Thread Context

	Introduction
	The OIL2 Object Model
	Design Philosophy
	Language Elements
	
	Native Data Types
	Class Namespaces and Versions
	Global Variables
	External Functions
	Include Files

	The OIL2 Grammar
	
	Comments
	Constants
	Documentation
	Identifier Names
	File Structure
	External Function Declarations
	Global Variable Definitions
	Declaration of Implicit Variables
	OIL2-implemented Functions
	Named Constant Definitions
	Class Definitions
	Method Implementation
	Method Overloading
	Method Aliases

	Method Bodies
	Executable Statements
	Thread Context
	OIL2 Statement Reference

	Reserved Words
	I
	Index

