
Version: 11/26/2002 9:22 PM

FFAARRGGOOSS//VVIISSTTAA
Object Management Environment

Programmer’s Reference
Release 4.1.2

ii

FARGOS/VISTA Object Management Environment
Programmer’s Reference Manual
FARGOS Development, LLC
757 Delano Road
Yorktown Heights, NY 10598
http://www.fargos.net
mailto:support@fargos.net

Copyright 2000-2002 FARGOS Development, LLC

Notice of Rights
All rights reserved. This document may be rendered into whatever form is useful for
the user, including electronic transmission or printing, so long as the content is not
altered.

Trademarks
FARGOS/VISTA, FARGOS/SolidState and FARGOS/SolidConnection are trademarks of
FARGOS Development, LLC.

Abbreviations
FARGOS Development, LLC is a Limited Liability Company registered with the State
of New York. It is required to identify itself as such in its name, hence the “, LLC”
suffix. For purposes of readability in this document, the “, LLC” suffix is sometimes
dropped. The phrase “FARGOS Development” always denotes “FARGOS
Development, LLC” and is not intended to suggest any alternate form of
organization.

Notice of Liability
Information in this document is distributed on an “As Is” basis, without warranty.
While every precaution has been taken in the preparation of this document, FARGOS
Development, LLC shall not have any liability to any person or entity with respect to
any loss or damage caused or alleged to be caused directly or indirectly by the
instructions contained within this document or by the computer software or hardware
products described in it.

http://www.fargos.net/
mailto:support@fargos.net

iii

Contents
1. Introduction ..1

Model of Operation ..1
Development Languages ..3
Deploying New Applications ..3

2. The VISTA Daemon ..5
The Boot Process ..5

Linking a Custom VISTA Executable...6
3. Defining New Classes ...11
4. Security..11

Access Control Lists ..12
Users ..12
Encryption ...13

5. Input/Output Transport Schemes...13
6. Data Encoding ...14

String Encoding Formats ..15
7. External Applications ..15
8. Working with Objects ...16
9. Working with Threads...17
10. Reflection and Meta Data ..18
11. Getting Started..21
12. Object Management Environment Classes ...23
13. OIL2 Class Documentation ..23

Classes in Namespace Experimental ..23
Classes in Namespace Local..23
Classes in Namespace Standard ..23

14. Standard Library of OIL2-Callable Functions ..27
Language Support ..28

int allow(string methodName) ...28
int alwaysAllow(string methodName)..28
int inCalledMethod()...28
int oidIsExternal(oid obj) ..28
nlm createNLM(string catalogName, any messageID, string defaultMessage,
any parameters, any annotations) ...28
any makeUnique(any referenceCountedType)..29
int typeOf(any)..29

Array and Set Manipulation..30
int elementCount(any complexType) ..30
int indexExists(any sparseOrAssocArray, any integerOrStringIndex).............30
int nextIndex(any sparseOrAssocArray, int subscript).................................30
string getKeyForIndex(assoc assocArray, int subscript)30
int deleteIndex(any sparseOrAssocArray, any integerOrStringSubscript).......31
set arrayToSet(array sparseArray) ...31
array setToArrray(set listOfElements)...31
any mergeArrays(…) ..31
array orderSubscripts(any vector, int sortMode) ..31
array sortArray(any vector, int sortMode) ...32

String Manipulation...33
string charToString(int char) ...33
any stringToNumber(string s, int desiredOutputType).................................33
array tokenizeString(string source, string delimiters, int convert)33
int length(string) ...33

iv

int calculateStringLength(…)..33
int findSubstring(string sourceString, string subString)...............................34
int findLastSubstring(string sourceString, string subString).........................34
string convertCase(string sourceString, int toLowerCase)............................34
int midchar(string s, int offset) ..34
string midstr(string source, int startOffset, int fragmentLength)34
string makeAsString(...) ...34
string reverseString(string data)..35
string stripHTML(string data)...35
string substituteText(string original, assoc searchAndReplaceValues)35
string substituteEnvironmentVariables(string sourceString).........................35
any parseHTTPformData(string urlEncodedData, int desiredType)36
array parseHTTPuriData(string uri, string defaultScheme, string
defaultAuthority, string defaultContext) ..36
array parsePathComponents(string pathName)..36
string pathComponentsToString(array components, int start, int end)36
string relativePathToAbsolute(string rootDir, string relativePath)37

Bit Manipulation ...38
int lowBit(int integerValue) ...38
int highBit(int integerValue) ..38
int mergeBits(int src, int srcOffset, int srcLen, int mergeInto, int mergeOffset)
...38
array concatBits(any sourceBitData, int bitsToAdd, any bitState)38

Debugging ...39
int display(...) ...39
int debugDisplay(int debugLogLevel,…)...39
int displayAsHex(...)...39
int debugDisplayAsHex(int debugLogLevel, …) ...39
any displayVisible(string)..39
assoc getSystemInfo() ...40
any getSystemInfoAttribute(string attributeName).....................................40

Data Encoding..41
string asciiToBase64(string data, int breakIntoLines)..................................41
string base64ToASCII(string) ..41
string compressString(string data)...41
string gzipString(string data) ..41
string uncompressString(string data) ...41
string gunzipString(string data) ...41
string makeAsHexString(…)...41
string hexToBinary(string hexString) ..42
string safeURI(string textString) ..42
string convertURIescapes(string textString) ..42
any decodeData(string) ..42
array decodeFirstElement(string data)..42
int decodeStringAsLength(string data)..42
string encodeData(any data, int version) ..42
string encodeLengthAsString(int val)..43
array listEncodingVersions()..43

Encryption ...44
array makePublicKeyPair(string secret)...44
array makeSessionKey(string publicKey, string randomData)44
string decryptSessionKey(string localPrivateKey, string encryptedKey)44
array initializeCipher(string secret, int dir, string initVector)44

v

int freeCipher(array cipherID) ...45
string decryptMessage(array cipherData, string message)...........................45
string encryptMessage(array cipherData, string message)...........................45
string makeRandomKey(int bits)..46
int getRandomInteger(int upperBound) ..46
string SHA1hash(string data) ..46
string MD5hash(string data)..46

File System Information ..47
assoc getFileInfo(string fileName) ..47
array listDirectory(string directoryName) ..47
int makeDirectory(string directoryName) ..47
int removeDirectory(string directoryName) ...47
int renameFile(string orgFileName, string newFileName).............................47
int unlinkFile(string fileName)..47

Time Manipulation ..48
int timeDifference(assoc absoluteTime1, assoc absoluteTime2)....................48
assoc convertLocalRelativeTimeToAbsolute(int relativeTime, int toGMT)........48
assoc convertRFC1123date(string)...48
int getLocalRelativeTime() ..48
int getRelativeMilliseconds()..49
string iso8601Date(assoc absoluteTime)...49
string rfc1123Date(assoc absoluteTime) ...49

Access Control Lists ..50
assoc makeDefaultACL() ...50
assoc addUserToACL(assoc existingACL, string userInfo, assoc
permittedMethods)...50
assoc makePermitEveryoneACL() ...50
assoc createACLthatAllowsOthers(...) ...50
assoc createACLthatDisallowsOthers(...) ...50
oid createNewOIDthatOnlyAllowsOthers(oid obj, array permittedMethods)50

User Authentication ..51
int becomeUser(string userName, string password)....................................51
string becomePseudoUser()...51

Services ..51
int registerService(string serviceName, oid obj, int exportable)51
int unregisterService(string serviceName, oid obj)51
oid lookupLocalService(string serviceName) ..51
assoc listRegisteredServices() ...52
array listRemoteSystems()..52

15. System Information Attributes...52

1

1. Introduction
The FARGOS/VISTA Object Management Environment provides the infrastructure of a
transparently distributed, multithreaded, object-oriented operating system that
operates across heterogeneous systems. FARGOS/VISTA-based applications are
realized as active objects that reside within and interact with this distributed
environment.

The multithreaded nature of the FARGOS/VISTA Object Management Environment
makes it ideal for implementing asynchronous applications. The true power of
FARGOS/VISTA is realized by making use of its distributed capabilities, which provide
a robust, powerful and easy-to-use foundation for building complex, peer-to-peer
distributed applications that work across a variety of hardware and operating system
platforms.

The FARGOS/VISTA suite of technologies builds upon over a decade of research into
robust, transparently distributed object-oriented operating systems; however, it is
constructed from a completely new code base and design. While, because of its
youth, it lacks the extensive production use of its predecessor technologies and
corresponding breadth of affiliated applications, it does enjoy several significant
advances in design and functionality. Although not an exhaustive list, the following
illustrates some of the reasons why programmers benefit from using FARGOS/VISTA
to develop new applications:

• Productivity: a 6 to 10-fold improvement in productivity using OIL2.
• Distributed across heterogeneous platforms: source code written for one

platforms works on all the others. Architecture-neutral object code can even
be generated and distributed without concern to the architecture of the target
host.

• Robustness: there are no predefined limits from the very basic primitives all
the way to complete applications, so no surprises due to unexpected limits
being reached; memory management is performed by the underlying system

• Reusability: the object model encourages the implementation of generic
components that can be reused by and extended.

• Reduced complexity: active objects break what would normally be a large,
monolithic program into cooperating collections of well-focused objects. This
also provides a natural mechanism for distributing functionality across
multiple physical machines.

Model of Operation
As its name implies, the FARGOS/VISTA Object Management Environment
implements an infrastructure that hosts and manages objects. The FARGOS/VISTA
object model is intended to be being simple to understand, consistent and yet
powerful. Many aspects of the object model will be familiar to programmers who
have previously been exposed to object-oriented programming:

• A class defines both the variables that represent the state of a particular
object (these are called instance variables) and the operations that can be
performed against objects of a particular class (these operations are called
methods).

• A class is uniquely named by three elements: a name space, the class name
and a version Id. The FARGOS/VISTA Object Management Environment
supports the simultaneous use of multiple versions of a class.

2

• A class can inherit from one or more classes (i.e., multiple inheritance is
supported). The classes from which it inherits are called its base classes.
From the perspective of its individual base classes, it is considered a derived
class. The terminology of super- and sub-class is also commonly used;
however, this document will use the terms base and derived as an aid to
clarity since the similarity of the prefixes super and sub can create confusion
when read quickly.

• A class must inherit from the base class Object. This can either be explicitly
stated or implied as a property of inheriting from another base class that in
turn eventually inherits from the class Object.

• Every class must have both a create and a delete method. While most
classes have more methods, it is entirely possible to have a useful class that
only implements these two methods.

• An object is said to be an instance of a class. It is a distinct collection of
variables as defined by the class definition.

Every object is identified by a globally unique identifier, which is automatically
generated at the time the object is created. This unique identifier is referred to as
an object Id. Globally unique means across all machines, not just the address space
into which the object is born.

The rules above pertain to the static nature of class definitions. The FARGOS/VISTA
object model also includes operational aspects that are unconventional:

• Two objects can only interact through the sending of a message. This
restriction is made visible in OIL2: it does not permit the use of pointers and
thus the direct manipulation of another object's instance variables. In OIL2, a
message is sent using the send statement. C++ programs can use the
OMEthread::sendMessage() function or equivalent (e.g.,
OMEapi::invokeMethod()).

• In general, when a message is received for an object, the indicated method is
executed. This process is called a method invocation. The indicated method
may have a null body, which means that no code is to be executed. The
delete method of many classes has this characteristic.

• If an object's method body is not null, then its execution is performed by a
separate thread. This means that the runtime environment of OIL2 objects is
one in which parallelism is supported at a fine level of granularity, namely
that of a method invocation. If compared to conventional environments, this
would correspond to a separate thread of execution being spawned for each
function call. In contrast to convention programming models, this means that
FARGOS/VISTA-based applications are composed of collections of active
objects.

• By default, only one method can be active on an object at a time. This
restriction enforces safe behavior by default and prevents race conditions, a
common issue in multi-threaded environments. Except in very complex
cases, programmers need take no action to disable the default behavior, but
this capability is available (via the allow() and alwaysAllow() functions).

• If more than one method is active against an object, the other method cannot
proceed until the currently active method is suspended. Again, the default is
to enforce safe behavior and prevent race conditions, but this can be
overridden by setting a thread as preemptable.

The rules presented above are elaborated upon later in this manual.

3

Development Languages
The programming language of choice for FARGOS/VISTA developers is Object
Implementation Language 2 (OIL2) and most of the examples in this manual are
presented using OIL2. There are several reasons for the preference of OIL2:

• The OIL2 language uses the FARGOS/VISTA Object Management Environment
as its runtime environment, providing a one-to-one mapping for many
features.

• It generally takes 6-10 times less code to express a routine in OIL2 than in
C++.

• OIL2 source can be compiled to native object code or an architecture-neutral
format that can be processed by a FARGOS/VISTA-based platform.

It is important to realize that programmers are not restricted to only use OIL2. For
example, the FARGOS/VISTA Object Management Environment can also host
applications completely written in C++. It can also be integrated with external
applications by linking the FARGOS/VISTA Object Management Environment core as
a library, thus adding FARGOS/VISTA capabilities to an existing application.
Completely distinct applications residing in a separate address space or host can be
integrated using the OMEapi() library.

Deploying New Applications
On a given host, the FARGOS/VISTA Object Management Environment is normally
established by running a single process and all FARGOS/VISTA-based applications
reside within this single process. This is one aspect of the power of the
FARGOS/VISTA-environment: distinct applications written by various programmers
live within the same address space and can operate in isolation or cooperate as
needed. It is also possible to use a separate process for each mission-critical
application; however, the overhead of context switches between separate address
spaces is then incurred.

New FARGOS/VISTA application code is deployed in one of three primary ways:

• The application’s native object code is linked with the FARGOS/VISTA Object
Management Environment library and a custom executable is created.

• The application’s native object code is converted to a shared object file and
dynamically loaded into a running Object Management Environment process.
This is only possible on platforms whose native operating systems support
dynamically linked executables. Most operating systems that support this
capability require that the dynamically loaded object code by stored in a file.

• The application is compiled into an architecture-neutral object code (a
capability of the OIL2 compiler) dynamically loaded into a running Object
Management Environment. The object code can be retrieved from a file on
the local system or a string in memory.

The use of architecture-neutral object code has a few advantages. During the
development phase of an application, the time needed for a programmer to compile,
load and start execution of a new version of the code under development can take
less than a second. With such a high level of interactive performance, the time
required to compile and link new executables disappears as an issue. Architecture-
neutral object code also permits a developer to distribute a single object file without
having to be concerned about the end user’s target platform.

Native object code is the format of choice when the goal is to achieve maximum
performance. It can also be used to enforce price differentials for different platforms

4

(for example, Linux-based workstations vs. OS/390-based mainframes). Native
object code is also a requirement in some situations, such as providing an integration
layer to an existing library.

Note: the quality of native code can be improved if the target environment's
characteristics are well known and uniform. For example, most code for current Intel
processors is actually generated so that it will run on an Intel 386 CPU and upwards.
If one knows that the target is actually an Intel Pentium III, then performance gains
can be realized by taking advantage of CPU-specific instructions. The significant
drawback is that the resulting object code will not run on earlier Intel processors or
those manufactured by AMD. The same issues exist in each long-running CPU
architecture (e.g., IBM System/360/370/390, Sun SPARC/UltraSPARC, IBM
Power/Power2/PowerPC). Consequently, most applications are compiled to use the
set of CPU instructions that represent the lowest common denominator architecture1.

1 FARGOS Development, LLC can provide specialized builds upon request.

5

2. The VISTA Daemon
The standard FARGOS/VISTA Object Management Environment is made available as
the executable program vista. Note that on some native operating systems, the
executable is required to be named vista.exe, but it invariably can still be invoked
using the common name vista. The executable can be run directly from the
command line or started as a long-running daemon in the background. On Microsoft
Windows NT-derived systems, the OMEregNTserv.exe utility can be used to start
the vista.exe process as a managed service.

TThhee BBoooott PPrroocceessss
The vista executable is normally invoked with a single argument that specifies the
name of a file that will be processed by the class CreateObjects. The boot process
of a VISTA daemon takes place in two basic steps: the system is initialized and then
it runs threads until no more work can be done. The initialization is performed by
the OMEinitSystem() function and performs the following sequence of actions:

1. All statically linked modules are initialized.
2. All mandatory native shared object modules are dynamically loaded and

initialized.
3. An object of class ObjectCreator is created and registered as the local

service ObjectCreator.
4. An object of class ShutdownService is created and registered as the local

service ShutdownService.
5. An object of class CreateObjects is created and provided with the file name

that was passed as an argument to the vista executable (or the default
vista.rc is none was specified).

Once the system is initialized, execution of threads can begin. This is normally
performed by calling the function OMEmainLoop(), which returns only when no
more threads are active and no input/output or timer events remain.

The FARGOS/VISTA Software Development Kit contains a default VISTAOMEmain()
function that is very similar in appearance to the following example:

#include <OMEruntime.h>

int VISTAOMEmain(int argc, char *argv[], char *envp[])
{
 char *rcFileName;
 int i;

 rcFileName = "vista.vrc"; // set default...
 for(i=1;i<argc;i++) {
 if ((strcmp(argv[i], "-d") == 0) ||
 (strcmp(argv[i], "+d") == 0)) {
 ++i; // skip debug flag argument...
 continue;
 }
 if ((*argv[i] != '-') && (*argv[i] != '+')) {
 rcFileName = argv[i];
 }
 }

 OMEinitSystem(rcFileName, argc, argv, envp);
 OMEmainLoop();
 return (0);
}

6

The initial command file is critical to the operation of the vista executable since it
details the starting configuration of the environment. On platforms that support it,
the script can itself be made executable and then invoked as a command in its own
right. Consider the following example:

#!/usr/local/bin/vista
LoadObjectFile clMyApp.so
MyApplication arg1

On most modern Unix systems, if the text above is placed into a file myapp, marked
as executable and then invoked, the vista daemon at /usr/local/bin/vista will be
started and it in turn will process the object creation directives specified. A similar
effect can be achieved with desktop-based operating systems by creating a file with
a particular file suffix (e.g., “.vrc” for vista rc) that is associated with the vista
executable for that platform. Such an association is stored in the registry by the
automated installation programs released by FARGOS Development, LLC for variants
of Microsoft Windows (95/98/NT 4/2000/XP).

Linking a Custom VISTA Executable
In contrast to conventional application development, which yields a standalone
executable, most FARGOS/VISTA-based applications expect to be co-resident with
other applications inside the address space of a single FARGOS/VISTA Object
Management Environment. To enable this, developers normally distribute a
command file to be processed by CreateObjects and an appropriate dynamically
loadable module. The dynamically loadable module is often an OIL2 Architecture-
Neutral Format (OIL2 ANF) file, but it can also be a shared object file readable by the
host’s native operating system. There are times, however, where a developer may
wish to ship a self-contained executable that has been customized for the application
in question. The FARGOS/VISTA Software Development Kit for the target platform is
a prerequisite for creation of a custom executable that includes statically linked
modules or will automatically load dynamically loadable object files.

There are thus two distinct modes in which native object code can be generated and
four modes in which it can be used:

Table 1

Compile Mode Link Mode

Conventional object (.o, .obj) Statically linked to form executable.

Shared object (.so, .dll)
Automatically dynamically loaded by the
executable upon start of execution

Explicitly loaded by LoadObjectFile,
typically during the processing of a script
by CreateObjects.

Shared object (.so, .dll)

or

OIL2 Architecture Neutral Format (.o2o)
Automatically loaded on demand via
facilities provided by the
AutomaticClassLoader service.

To create a custom vista executable, the following steps should be followed:

1. If the application is written in OIL2, compile the application to C++ source.

7

2. Compile the application’s C++ source code using the native C++ compiler,
yielding an object file for the target platform.

3. Generate a module list file for new executable by using the mkModuleList
command. It takes as arguments the names of all the object files (both
conventional and shared) needed to create the executable. In this scenario,
mkModuleList would be passed the object files of the application and the
FARGOS/VISTA libraries. The mkModuleList program outputs a C++ source
file; typically, this is saved as moduleList.cpp.

4. Compile the output from mkModuleList (typically, moduleList.cpp) using the
native C++ compiler.

5. Link all of the conventional objects (the application object files, the
FARGOS/VISTA libraries and the moduleList object) together to create a new
custom executable.

The mkModuleList program recognizes several different file types and generates an
appropriate C++ source file that defines the module initialization table. If the file is
a shared object file (.so) or dynamically loaded library (.dll), the module initialization
table is created such that the file is automatically dynamically loaded; otherwise, the
object file is assumed to be statically linked into the executable and the file’s
initialization routine is called without first dynamically loading the object code.

For a given object file, mkModuleList looks for symbols that begin with the pattern
“INIT_DECLARE_”. The convention used is that the “INIT_DECLARE_” text is
suffixed with the name of the file minus its file type suffix. For example, a file
clMyApp.oil would be compiled to clMyApp.cpp by the OIL2 compiler. The native
C++ compiler would compile clMyApp.cpp to an object file named clMyApp.o or
clMyApp.obj (depending on the host platform). The name of the file minus its file
type suffix is “clMyApp”, so the full name of the symbol would be
“INIT_DECLARE_clMyApp”. The OIL2 compiler generates such initialization routines
automatically; developers creating handcrafted code should follow the convention
specified above.

An example initialization routine for a module appears below:

#ifdef _MSC_VER /* Microsoft Visual C++ */
extern "C" __declspec(dllexport) void INIT_DECLARE_clHTTP()
#else
extern "C" void INIT_DECLARE_clHTTP()
#endif
{
 OMEclass *classRecord;
 int i;

 INIT_CONSTANTS();

 // Define classes
 classRecord = OMEdefineNewClass("Standard",
 "HTTPdaemon",
 0, sizeof(class OIL2_CL_Standard_HTTPdaemon_0),
 0, 0,
 OIL2_CL_Standard_HTTPdaemon_0::ALLOCATE_AND_INIT,
 OIL2_CL_Standard_HTTPdaemon_0::FREE_STORAGE);
 classRecord->setStorageDescription(OIL2_CL_Standard_HTTPdaemon_0_varTabl
e);
 classRecord->inheritFromClass("", "Object", 0, 0);
 classRecord->resolveLinkages();
}

The following Makefile provides an illustration of the generation of a custom vista
executable using the FARGOS/VISTA Software Development Kit. It assumes the use
of GNU make, which has been ported to all of the platforms supported by
FARGOS/VISTA. The conditional directive ifeq() is used to handle some platform-

http://www.gnu.org/directory/All_GNU_Packages/make.html

8

specific configuration; developers can use the native make program associated with
a particular platform by removing the non-essential portions.

9

(C) Copyright FARGOS Development, LLC 1999. All rights reserved.

*** NOTE *** External variables used
OBJ_SUFFIX - typically .o or .obj depending on platform
LIB_SUFFIX - typically .a or .lib depending on platform
EXE_SUFFIX - typically not defined (or null) or .exe depending on platform
DYNAMICALLY_LOAD_CLASSES - defined if most core classes are to be dynamically
loaded. Runtime always has capability to load more dynamically
regardless of the definition of this variable

DYNAMICALLY_LOAD_CLASSES=0
USE_DYNAMIC_LIBRARY=0

.PRECIOUS: .cpp
.SUFFIXES: .so .dll .obj

C++ compilation rules
%.${OBJ_SUFFIX} : %.cpp ; ${CC_PLUSCOMP} ${OPTIMIZE} -D_REENTRANT –
I${VISTA_ROOT}/include ${CPLUSFLAGS} -c $<
end C++ rules

OIL2 -> C++
ifeq (${OBJ_SUFFIX},obj)
%.cpp : %.oil ; ${VISTA_ROOT}/${VISTA_UNAME}/bin/oil2.BAT $<
else
%.cpp : %.oil ; ${VISTA_ROOT}/${VISTA_UNAME}/bin/oil2 $<
endif
UNIX .o to shared object

magic for making the .so for ldLoading... sample:
g++ -shared -o OMEfileDescriptor.so OMEfileDescriptor.o

.o.so:
 g++ -shared -o $@ $<

Windows .obj to DLL
.obj.dll:
 link /nologo /force /dll /out:$@ $<

ifeq (${VISTA_UNAME},OpenBSD)
 export DONT_USE_PTHREADS=1
 OPTIMIZE += -DDONT_USE_PTHREADS
endif

ifdef DONT_USE_PTHREADS
 PTHREAD_LIB=
else
 PTHREAD_LIB=-lpthread
 ifeq (${VISTA_UNAME},SunOS)
 PTHREAD_LIB += -lrt
 endif
endif
DYNAMIC_LOAD_LIB=
ifeq (${VISTA_UNAME},Linux)
 DYNAMIC_LOAD_LIB=-ldl
endif
ifeq (${VISTA_UNAME},SunOS)
 DYNAMIC_LOAD_LIB=-ldl -lsocket -lnsl
endif

OME_CORE_STATIC_LIB=OMEcore.$(LIB_SUFFIX)
OME_CORE_DLL=OMEcore.$(DLL_SUFFIX)

** NOTE ** ORDER IS IMPORTANT--THIS SECTION MUST APPEAR BEFORE DEFINITION OF
DLOBJS
ifeq (${DYNAMICALLY_LOAD_CLASSES},1)
O_SUFFIX=${DLL_SUFFIX}
else

10

O_SUFFIX=${OBJ_SUFFIX}
endif

OIL-implemented class objects that must be present in every binary
prior to the dynamic loading of any others.
This should be a relatively small set and need not be adjusted
if a statically linked executable is produced
BASIC_CLASS_OBJS=clMyStatic1.${OBJ_SUFFIX}

OIL-implemented class objects that can be either statically linked or
dynamically loaded. The bulk of the classes appears here.
NOTE: THESE SHOULD ALL USE O_SUFFIX, NOT OBJ_SUFFIX!
DLOBJS=clMyDL2.$(O_SUFFIX)

OBJS=$(CORE_OBJS) $(BASIC_CLASS_OBJS)
ifeq (${DYNAMICALLY_LOAD_CLASSES},1)
 ALL_OBJS=$(OBJS)
 AUX_OBJS=$(DLOBJS)
else
 ALL_OBJS=$(OBJS) $(DLOBJS)
 AUX_OBJS=
endif
ifeq (${USE_DYNAMIC_LIBRARY},1)
 OME_CORE_LIB=$(OME_CORE_DLL)
else
 OME_CORE_LIB=$(OME_CORE_STATIC_LIB)
endif

VISTA_OBJECTS=vista.${OBJ_SUFFIX} moduleList.${OBJ_SUFFIX} $(OME_CORE_LIB) $(LIBS)

all: vista${EXE_SUFFIX}

UNIX binary...
vista: $(VISTA_OBJECTS)
 ${CC_PLUSCOMP} ${OPTIMIZE} -rdynamic -o $@ $(VISTA_OBJECTS) $(DYNAMIC_LOAD_LIB)
$(PTHREAD_LIB)

Windows binary
vista.exe: $(VISTA_OBJECTS)
 cl /Fe$@ $(OPTIMIZE) $(VISTA_OBJECTS) /link ws2_32.lib advapi32.lib odbc32.lib

ifeq (${VISTA_UNAME},Windows)
moduleList.cpp: $(ALL_OBJS) $(AUX_OBJS)
 mkModuleList.bat $(ALL_OBJS) $(AUX_OBJS) > $@
else
moduleList.cpp: $(ALL_OBJS) $(AUX_OBJS)
 sh mkModuleList catSym $(ALL_OBJS) $(AUX_OBJS) > $@
endif

11

3. Defining New Classes
Object code generated by an OIL2 compiler always includes all of the mechanisms
needed to automatically register the classes defined within the object code module.
Consequently, programmers that avail themselves of the opportunity to write their
applications in OIL2 need not be concerned with the procedure of registering classes.

On the other hand, programmers that write handcrafted classes must register such
classes and their associated methods with the FARGOS/VISTA Object Management
Environment before they can be used. Class definitions are normally registered
using the C++ function OMEdefineNewClass(). Once defined, the meta data for
the class should be set using the C++ function
OMEclass::setStorageDescription(). The list of inherited classes must be
specified using appropriate calls to OMEclass::inheritFromClass(). When
completely defined, OMEclass::resolveLinkages() must be called to attempt to
link the class against any inherited classes. The operation may fail because a
needed class is not yet available, but if the missing class is subsequently loaded, the
linkage will automatically be completed the first time an object of this class is
created.

classRecord = OMEdefineNewClass("Experimental", "GoogleSearchService", 0,
 sizeof(class OIL2_CL_Experimental_GoogleSearchService_0), 0, 0,
 OIL2_CL_Experimental_GoogleSearchService_0::ALLOCATE_AND_INIT,
 OIL2_CL_Experimental_GoogleSearchService_0::FREE_STORAGE);
classRecord->setStorageDescription(
 OIL2_CL_Experimental_GoogleSearchService_0_varTable);
classRecord->inheritFromClass("", "XMLsupport", 0, 0);
classRecord->inheritFromClass("", "SOAPservice", 0, 0);
classRecord->resolveLinkages();

After a class is defined, its associated methods must next be declared. This is done
using the C++ function OMEdefineNewMethod(). As noted above, all of this work
is automatically performed by object code files that are generated by an OIL2
compiler.

for(i=0;i<sizeof(methodTable) / sizeof(OMEmethodDefinition);i++) {
 OMEdefineNewMethod(methodTable[i]);
}

4. Security
There are three primary reasons why security is a paramount concern of the
FARGOS/VISTA environment:

• FARGOS/VISTA implements a transparently distributed environment.
Because not all hosts that participate in a distributed system are under
control of the same administrative authority, resources must be protected
from unauthorized use from remote hosts.

• Many FARGOS/VISTA-based applications are long-running services that
perform activities on the behalf of many different users. Not every user is a
privileged user and users should be prevented from obtaining or modifying
information that does not belong to them.

• Usually, a given FARGOS/VISTA Object Management Environment will host
several applications simultaneously. Such applications need to be protected
from unauthorized use.

12

AAcccceessss CCoonnttrrooll LLiissttss
All objects and threads within a FARGOS/VISTA Object Management Environment are
protected by access control lists. Access control lists can specify permissions at a
very fine level of granularity, namely per-user and per-method. Every access control
list has a default permission setting that is used if there is no entry for the active
user. The OIL2-callable function makeDefaultACL() creates an access control list
that permits the current user complete access to an object and denies access to all
others. It in turn uses the C++ routines OMEcreateACL() and OMEaddToACL().

Access control lists are associated with an object Id. Recall that one of the
fundamental rules of the FARGOS/VISTA object model is that every object has a
globally unique Id (discussed above in the section entitled “Model of Operation”).
Without violating this requirement, the FARGOS/VISTA Object Management
Environment permits multiple, globally unique object Ids to refer to the same
physical object. Each such object Id will be associated with a different access control
list. By handing out an object Id with an appropriately constructed access control
list, an application can maintain extremely fine-grained access control to its
methods. Taken to the extreme, a given object Id can permit a single user to invoke
only one of the methods associated with an object. An access violation will occur if
the object Id is used to invoke a different method or used by a different user.

Technically, there is no notion of the “owner” of an object. Access privileges are
completely controlled by having possession of an object Id that permits a user to
perform desired actions.

Access control lists are directly used by programmers in two places. The first is
when an object is created by sending a createObject (or
createObjectAndNotifyWhenDone) message to the ObjectCreator object. The
second is when a new object Id is created using the OIL2-callable function
createNewOIDthatOnlyAllowsOthers() (or in C++ when making a new
OMEoid). An example usage of both cases appears below:

 acl = makeDefaultACL();
 readObj = send "createObject"("ReadAndProcessFile", acl,
 thisObject, ioObj, acl, MAX_LINES_PER_SEND)
 to ObjectCreator;

 m[0] = "releaseThread";
 sleepingThread = createNewOIDthatOnlyAllowsOthers(thisThread, m);
 allow("processLine");
 send "suspendThread" to thisThread;
 sleepingThread = nil;

UUsseerrss
While threads are manipulated in the same fashion as objects, threads are not
objects and the class Thread does not inherit from the class Object. Whereas
objects do not have “owners”, threads are always associated with some user. The
user may be known to the local host operating system or a logical user known only
within the FARGOS/VISTA Object Management Environment. A thread can change
its associated user using the OIL2-callable function becomeUser() or the C++
function OMEthread::setUserId(). It is common to implement a service that will
perform actions on behalf of anonymous users—a current well-known example would
be an HTTP (world wide web) server. For strengthened security, the OIL2-callable
function becomePseudoUser() can be used to create a unique, albeit temporary,
logical user identity and associate it with the threads that perform the anonymous
user’s request.

13

EEnnccrryyppttiioonn
When two FARGOS/VISTA processes (i.e., distinct address spaces) communicate, all
traffic is encrypted. Each side of a communications link generates a random 128-bit
session key. This means that the session key used to send data is distinct from the
session key used to decrypt incoming data. Whenever random data is required,
FARGOS/VISTA makes use of random number generator devices if they are
supported by the underlying host's operating system. The randomly generated
session keys are communicated using public key encryption and a multi-step
protocol, so they never appear in the clear and man-in-the-middle attacks are
detected. If a man-in-the-middle attack is attempted, only information related to
the randomly generated session key is exposed and, because the attack is detected,
the connection will never be completed and no data will be exposed to the attacker.
The default symmetric encryption algorithm is Rijndael, which was ultimately
selected as the Advanced Encryption Standard at the end of 2000 by the United
States National Institute of Standards and Technology and documented as FIPS-
197.2

A collection of C++ cryptographic functions is defined in the OMEcrypto.h header file.
These deal with public key exchange of session keys, generation of random byte
strings, Secure Hash Algorithm 1, and the encryption and decryption of blocks of
data. OIL2 programs interface to these facilities by using makeRandomKey(),
SHA1hash(), initializeCipher(), encryptMessage() and other associated
functions.

2 Earlier releases of FARGOS/VISTA used twofish, which was one of the Advanced
Encryption Standard finalists.

5. Input/Output Transport Schemes
Many conventional applications that work with byte streams or packets need to take
into account the underlying characteristics of the input/output mechanism. For
example, files are opened differently than TCP sockets. The FARGOS/VISTA
infrastructure provides a common, high-level and extensible mechanism that permits
generic input/output routines to work with a wide variety of transport mechanisms.
Users and applications identify files and sockets using a form of Universal Resource
Locator (URL).

Developers can register new or custom transport schemes by using the
OMEregisterIOscheme() function. Any FARGOS/VISTA application that links with
or dynamically loads such an extension can make use of the new transport schemes
without requiring recompilation of existing code. The standard FARGOS/VISTA
infrastructure provides support for the schemes that are listed in Table 2. Note that
one should not expect Unix file domain schemes to be supported on non-Unix
platforms. A given host may not have all supported protocol stacks configured into
its kernel—thus while an IP Version 6 transport scheme may be understood by the
FARGOS/VISTA Object Management Environment, use of IP version 6 may be
impossible on a given host due to restrictions imposed by its kernel configuration.

It is reasonable to assume that a given host will successfully support the “file:”,
“tcp4:” and “udp4:” transport schemes; availability of the remainder is dependent on
the kernel configuration of individual hosts.

http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf

14

Table 2

Scheme Prefix Transport Description

File: access files in the local hosts file system

unix:

unixstream:

Unix file-domain stream connections

unixdatagram: Unix file-domain datagram connections

tcp:

tcp4:

listen for or establish IP version 4 TCP-
based connections

tcp6: Like tcp4:, but for IP version 6

udp:

udp4:

IP version 4 UDP ports

udp6: Like udp4:, but for IP version 6

raw:

raw4:

IP version 4 raw network socket

raw6: Like raw4:, but for IP version 6

ipx: Novell IPX (datagrams)

spx: Novell SPX (sequenced packets/streams)

All open file and socket descriptors are maintained by an object that is an instance of
an appropriate class derived from the C++ class OMEioDescriptor, which is defined
in the C++ header file OMEioObjects.h. Most FARGOS/VISTA Object Management
Environment applications make use of the class IOobject to access these facilities;
external C++ applications can use the OMEopenURL() function to create an
appropriate object of class OMEioDescriptor (or a derived class).

6. Data Encoding
FARGOS/VISTA runs on many different platforms and supports communication
between all of them. This requires that data can be exchanged between two distinct
platforms. The FARGOS/VISTA infrastructure provides a common, high-level and
extensible mechanism for encoding and decoding all FARGOS/VISTA data types.
Each encoding scheme is identified by a 32-bit version Id. The default encoding
schemes present in all FARGOS/VISTA components are version 1 and its compressed
counterpart, version 2.

Support for new encoding schemes is added using the C++ function
OMEdefineEncodeRoutinesForVersion(), which is defined in the C++ header file
OMEencode.h. The registration of the default version 1 and version 2 encoding
routines is conveniently performed by the C++ function
OMEloadVersion1Encodings(), which is called by OMEinitSystem().

The encoding of complex data structures and/or multiple items of data is handled in
an optimal fashion by the C++ class OMEencodeBuffer(). A pointer to an
OMEencodeBuffer() is taken as the argument to all OMEtype:: encode()
routines. When all the elements of data have been encoded, it can be serialized into
one large string using the OMEncodeBuffer::condenseIntoString() function. This

15

avoids the repeated concatenation that is common with approaches that are more
conventional. An example of the ease of use is provided below:

 OMEtype result;
 OMEencodeBuffer *encodeBfr;
 int rc;
 OMEstring *encodedData;

 encodeBfr = new OMEencodeBuffer(1);
 rc = data.encode(encodeBfr);
 if (rc != 0) { // failed…
 return (result);
 }

 encodedData = encodeBfr->condenseIntoString(1);
 result = encodedData; // take ownership
 delete encodeBfr;
 return (result);

Decoding of previously encoded data is performed using the C++ static function
OMEtype::decode().

Applications written in OIL2 make use of the encodeData() and decodeData()
functions.

String Encoding Formats
Whereas the encodeData() and decodeData() functions deal with any kind of
FARGOS/VISTA data type, string data represents a special case for which there are
several additional available encoding formats. The table below lists several:

Encode Decode Notes

C++ OIL2 C++ OIL2 Binding

OMEcompressString() compressString() OMEuncompressString() uncompressString()

OMEgzipString() gzipString() OMEgunzipString() gunzipString() RFC
1592

OMEbinaryToBase64() asciiToBase64() OMEbase64ToBinary() base64ToASCII() RFC
1521

OMEbinaryToHex() makeAsHexString() OMEhexToBinary() hexToBinary()

7. External Applications
Conventional applications can be externally integrated with the FARGOS/VISTA
Object Management Environment using the C++ class OMEapi, which is defined in
the header file OMEapi.h. The same mechanism and protocol is used to interface
external applications as is used by inter-FARGOS/VISTA Object Management
Environment connections. This means that the same security mechanisms are
enforced and the endpoint is represented by a PeerConnection object. When a
connection is established between the external application and a FARGOS/VISTA
Object Management Environment, an object Id mapping is created within the Object
Management Environment that corresponds to the external application. Subject to
access control, any message sent to that object Id from any interconnected peer is
automatically encoded and forwarded to the external application. Such messages
can be retrieved using the OMEapi::importInvocation() function. Responses or

http://www.ietf.org/rfc/rfc1592.txt
http://www.ietf.org/rfc/rfc1592.txt
http://www.ietf.org/rfc/rfc1521.txt
http://www.ietf.org/rfc/rfc1521.txt

16

unsolicited requests can be sent from the external application to any object within
the connected peer systems using the OMEapi::invokeMethod() function.

The standard FARGOS/VISTA Object Management Environment class
RegisterTemporaryService provides a convenient mechanism for automatically
deregistering a service associated with an external process. The
createTemporaryObject method of class PeerConnection can be used for
automatic cleanup by externally attached applications with more sophisticated needs.

The code fragment below illustrates the usage of the OMEapi. Source code to
complete examples can be found at http://www.fargos.net/examples.

OMEinitDebugFlag();
OMEloadVersion1Encodings();
OMEregisterStandardSocketSchemes();

api = new OMEapi(acl, addr);
count = 0;
while (1) {
 api = new OMEapi(acl, addr);
 rc = api->establishConnection(connectionUserInfo);
 if (rc == 0) break; // success..
 delete api;
 api = 0;
 if (count == 3) {
 std::cerr << "OMEpersistd: could not connect to " << ad
dr << "\n";
 return (2);
 }
 ++count;
#ifdef _WIN32
 SleepEx(3 * 1000, FALSE);
#else
 sleep(3);
#endif
}
// perform service...
do {
 rc = api->importInvocation(methodName, args, &fromObj,
 &targetObj, &context, &user);
 if (rc != 0) break;
 // validity check: could verify if targetObj == thisObject
 if (OMEdebugFlag & OMEdebugLogLevel1) {
 std::cerr << "methodName=" << methodName << "\n";
 std::cerr.flush();
 }
 if (*methodName.value.s == "saveObject") {
 rc = doSaveObject(args, fromObj, context, user);
 args.initializeAsType(OME_ARRAY);
 args[(uint32) 0] = rc;
 rc = api->invokeMethod(fromObj, replyMethodName, args);
 } else {
 std::cerr << "unrecognized methodName=" << methodName << "\n";
 std::cerr.flush();
 }
 if (rc != 0) break;
} while (OMEstopFlag.value.ui == 0);
delete api;

8. Working with Objects
All objects maintained by a FARGOS/VISTA Object Management Environment must
have the class Object as their ultimate base class. Every object is identified by a
globally unique object Id, which serves as a handle. Objects are created by sending
a createObject message or equivalent to the ObjectCreator object. Space for the
instance variables of each class are allocated using a storage allocation function,

http://www.fargos.net/examples

17

which is potentially class-specific but frequently realized using a generic function
associated with the implementation language. Objects are initialized by invoking in
order the create methods of the base classes and derived classes. The process
always begins with the create method of class Object and always ends with the
invocation of the create method of the derived class that was specified as an
argument in the createObject request. That create method is provided the
arguments that were passed in the createObject request. An object is deleted by
sending it a deleteYourself message, which is implemented by the base class
Object. When a deleteYourself message is processed, a series of delete method
invocations are queued such that the object is torn down in the exact inverse order
of that in which it was built up. Thus, the delete method of class Object is always
the last invoked. Storage is ultimately recovered using a storage reclamation
function, which can be class-specific.

9. Working with Threads
One of the unconventional characteristics of the FARGOS/VISTA Object Management
Environment is that a new thread is created for every method invocation. While
threads are not objects, each thread is identified by an object Id and it can be sent
messages in the same fashion as an object. OIL2 programs always view a thread as
being an instance of class Thread. On the other hand, C++ programs can also work
with the underlying implementation in the C++ class OMEthread. Since threads
can be sent messages just like objects, it is entirely possible for an object on a
remote peer system to send a message that wakes up or terminates a local thread.

Each FARGOS/VISTA Object Management Environment usually supports 3 distinct
threading technologies: two are proprietary ultra-high performance techniques that
work without any support from the host's kernel. The third is the native kernel's
support for lightweight processes. If such support is available from the host
operating system, the FARGOS/VISTA Object Management Environment can
automatically exploit symmetric multiprocessor hardware. Since every method
invocation is a logical separate thread of execution, the opportunities for parallelism
in a FARGOS/VISTA-based application are frequent, despite requiring no action to be
taken by the programmer.

Although thousands of threads may be active simultaneously within a given address
space, by default, only one method can be active upon a given object. If a message
is sent to an object while a thread is already active upon it, the method invocation
will be queued. If additional messages are received, they too will be queued and the
order in which they arrived will be maintained. Normally, the first queued thread will
be started when the currently active thread terminates. This behavior can be
overridden by allowing an invocation of a particular method to proceed. The allow()
function permits one such method invocation to be started and the alwaysAllow()
function permanently permits all such method invocations to be started. C++
programmers are encouraged to use the OIL2 interfaces, but they can use an
underlying OMEobjectInstance::allowMethod() function as illustrated below:

 OMEoid &thisObj = thread->getThisObject();
 const OMEobject *obj = thisObj.getInstanceInMemory();
 ((OMEobjectInstance *) obj)->allowMethod(*methodName.value.s);

There is another level of safety provided by default: although multiple threads may
be allowed to be active on an object, normally only one thread associated with the
object can be running at a time. Simultaneous execution of threads on an object is

18

possible if a thread is marked as preemptable. OIL2 applications achieve this by
sending the thread a setAsPreemptable message:

 send "setAsPreemptable" to thisThread;

C++ programmers can perform the same method invocation or just use the function
OMEthread::setAsPreemptable():

 thread->setAsPreemptable();

Threads can be terminated, put to sleep or woken up by sending them messages.
For example:

 send "terminateThread" to thisThread; // logical equivalent to exit
statement
 send "suspendThread" to thisThread; // put to sleep
 send "releaseThread" to sleepingThread;// wakeup

C++ programmers can use the equivalent member functions of the C++ class
OMEthread. C++ programmers should always use the OMEthread::exitRoutine()
function when exiting from a method body as this routine also automatically handles
the case where a method was called instead of being invoked.

10. Reflection and Meta Data
All data manipulated by OIL2 programs is tagged and its type can be determined by
the typeOf() function. In a similar fashion, information about an object's class can
be retrieved by sending it appropriate messages. These methods are defined in the
class Object, which is the base class for all classes (except Thread) in a
FARGOS/VISTA Object Management Environment. The isOfClass method may be
the most commonly used of such inspection methods.

The FARGOS/VISTA Object Management Environment also supports a powerful
facility called reflection3, which allows the behavior of an object to be overridden by
another object. In formal computer science theory, it permits the expression of
behavior using the higher-level facilities of the environment. In practice, it can be
use to dynamically implement bug fixes, debug and trace method invocations against
an object, modify and extend the behavior of applications for which one only has the
object code, etc. Reflection on a per-object basis is obtained by sending an object a
setMeta message.

Reflection on a class-specific basis is also possible by sending a
setClassMetaObject message to the ObjectCreator object. . This technique can
be used for on-demand conversion of objects:

1. The conversion application sets itself as the meta object of the old version of
the class.

2. Every time an object that is an instance of the old version of the class is
referenced, the invocation is passed to the class-specific meta object, which
in this case would be the conversion application.

3. The conversion application retrieves the old data and uses it to create an
object of the new version of the class.

4. The old object is deleted.
5. References to the new object proceed unimpeded because there is no meta

object associated with the new version of the class.

3 J. Ferber, "Computational reflection in class based object-oriented languages",
OOPSLA 1989 conference proceedings, pp. 317-326, 1989

19

21

11. Getting Started
The easiest way to gain familiarity with the FARGOS/VISTA Object Management
Environment is to create a simple class, load it and use it. Consider the following
OIL2 source program:

%include <OMEcore.o2h>

class Local . FirstDemo {
 any args;
} inherits from Object;

FirstDemo:create(int delete)
{
 args = argv; // save copy
 display("In FirstDemo:create, argc=", argc, "\n");
 if (delete == 1) {
 send "deleteYourself" to thisObject;
 } else {
 display("Staying around\n");
 }
}

FirstDemo:delete()
{
 display("FirstDemo:delete obj=", thisObject, "\n");
 display("Argument list was ", args, "\n");
}

Assume the above was placed into a file named clFirstDemo.oil. The following
command would compile it into the architecture-neutral format (OIL2 ANF) and place
the result in the file clFirstDemo.o2o:

% oil2_parse –oil2 clFirstDemo.oil

To test the application, the clFirstDemo.o2o file needs to be loaded into the
FARGOS/VISTA Object Management Environment and an object of class FirstDemo
needs to be created. The command file below does just that:

LoadOIL2File file:clFirstDemo.o2o
FirstDemo 1 arg2 arg3 arg4

Assuming the above was placed into a file called demo.vrc, the application could be
executed by issuing the following command:

 vista demo.vrc

One would expect to see output similar to:

In FirstDemo:create, argc=4
FirstDemo:delete obj=[1:0:1697257140:(2467193760|4294302185|50444)]
Argument list was {
 [0] = int32 1
 [1] = string "arg2"
 [2] = string "arg3"
 [3] = string "arg4"
}

Applications that reside within a FARGOS/VISTA Object Management Environment
are frequently developed and deployed in a fashion similar to the above. A collection
of introductory examples can be found in the tutorial An Introduction to
Programming Using OIL2. Some application may be statically linked to the runtime
and automatic on-demand loading of classes can eliminate explicit preloading of
class implementations. Applications may be initiated as a result of requests that

22

originated on a remote peer system rather than from the initial rc file read at the
start up of the local Object Management Environment.

23

12. Object Management Environment Classes
Most OIL2 programmers take advantage of the compiler’s support for maintaining
documentation with the source code. FARGOS/VISTA distributions normally include
a collection of HTML files that describe class interfaces. By convention, these files
are placed under the $VISTA_ROOT/classDoc subdirectory (see the FARGOS/VISTA
Installation Guide for details). Links to many standard classes are provided below;
programmers should always check their actual distribution for the most current
information.

Examples of the use of many of these classes are demonstrated in the programming
guide FARGOS/VISTA Examples.

13. OIL2 Class Documentation

Classes in Namespace Experimental
• PersistentDatabaseViaSQL

Classes in Namespace Local
• ConnectAndForward

• ConnectAndSlowlyForward

• ForwardConnection

• HTTPget

• HTTPuserAdmin

• POP3server

• ReadCSVfile

• SOAPservice

• SlowlyForwardConnection

• StarshipHTTPsetup

• WSDLtoOIL2

• XMLsupport

Classes in Namespace Standard
• AcceptConnection

• AcceptPeerConnections

• AllocateSessionID

http://www.fargos.net/oil2.html

24

• AnnounceServices

• AutomaticClassLoader

• ClassLocator

• ConnectToPeer

• CreateObjects

• CreateReplicaHTTPsession

• CreateReplicasOnServers

• DNSconnection

• DNSresolver

• EstablishConnection

• ExecProcess

• ForwardReply

• HTTP_SSIprocessor

• HTTPcachedFile

• HTTPcachedObject

• HTTPcommonLogFormat

• HTTPcreateApplicationSession

• HTTPcreateObjectBrowserSession

• HTTPdaemon

• HTTPdisplayObject

• HTTPextendedLogFormat

• HTTPfastReceive

• HTTPobjectBrowser

• HTTPprotectedDirectory

• HTTPpurgeCache

• HTTPrawCachedFile

• HTTPredirect

• HTTPreplacedText

• HTTPreplicaClientProxy

25

• HTTPreplicaStateVariable

• HTTPrequest

• HostTable

• IOobject

• JobController

• LoadOIL2File

• LoadObjectFile

• MakeOIL2ANFprofile

• NameServerDirectory

• NegotiatePeerConnection

• Object

• ObjectCreator

• ParseParameterFile

• PeerConnection

• PeerRegistry

• PersistencePageIn

• PersistenceService

• PersistenceTemporaryService

• PersistentObject

• ReadAndProcessFile

• ReadBuffer

• ReadMIMEtypeFile

• RegisterPoolMembership

• RegisterReplicaHTTPclass

• RegisterTemporaryService

• ReplicaClientProxy

• ReplicaHTTPsession

• ReplicaServer

• SQLviaODBC

26

• SendFile

• SendMailViaSMTP

• ShutdownService

• Thread

• TimerEvent

• TraceInvocations

• URLdirectory

• URLfileLoader

• URLprotectedFile

• WebDAVcollection

• WebDAVfacility

• WebDAVfile

• WebDAVresource

27

14. Standard Library of OIL2-Callable Functions
OIL2 programs can conveniently obtain the declarations of all standard functions
provided by the FARGOS/VISTA Object Management Environment core by including
the file $VISTA_ROOT/oil2Include/OMEcore.o2h:

%include <OMEcore.o2h>

Some of these routines are described below. Note: all OIL2-callable functions can
be utilized by C++ programmers; however, specialized C++-specific equivalents
might be chosen as a matter of preference.

28

LLaanngguuaaggee SSuuppppoorrtt

int allow(string methodName)
By default, only one method can be active upon an object at a time. In some
situations, it is desirable or necessary to permit a second method to be invoked upon
the object despite the first method still being active. A programmer calls the
allow() function and passes as its argument the name of the method that can be
invoked.

Note: used in this way, an allow() permits only one invocation of the indicated
method. Typically, before the method in question exits, another allow() call is
made to permit a subsequent invocation of the method.

Also note: the FARGOS/VISTA runtime permits the allowed method to be
restricted to a particular class, thus overriding the normal resolution
mechanism in which an implementation in a derived class will have
precedence over that of a base class if two methods have identical
prototypes. None of this advanced functionality is exposed by the
description above.

int alwaysAllow(string methodName)
The alwaysAllow() function is almost identical to allow() function, which was
described above, with the notable exception that the allow is permanent instead of a
one-shot affair.

int inCalledMethod()
The inCalledMethod() function returns 1 if the method was called; otherwise it
returns zero if it was invoked as a new thread of execution.

int oidIsExternal(oid obj)
The oidIsExternal() function returns 0 if the object is resident within the local
environment; otherwise it returns 1 to indicate the object is external.

nlm createNLM(string catalogName, any messageID, string defaultMessage, any
parameters, any annotations)
FARGOS/VISTA’s intrinsic support for Native Language Messages is a powerful
feature that should be used by any programmer that expects his program to be
utilized in other countries. The catalogName argument specifies the name of the
message catalog, messageID identifies the message and can be an integer (X/Open
style) or a string. The defaultMessage is used if a message cannot be obtained from
a catalog on the target system. The parameters argument is an array of data that
can be used to provide information that will be displayed in positional fields. The
annotations argument provides the opportunity for including additional semantic
information.

29

any makeUnique(any referenceCountedType)
Returns a unique copy of the passed argument. If the original argument was a
reference counted structure with more than one reference, the result is a duplicate in
full.

int typeOf(any)
The typeOf() function returns the type of the passed argument. The result is an
integer whose value indicates the type. OIL2 allows the reserved keywords to be
used as integer constants whose values correspond to each type. This is illustrated
in the following example:

if (typeOf(argument) == string) {
 display("It is a string\n");
} else if (typeOf(argument) == int) {
 display("It is an integer\n");
}

30

AArrrraayy aanndd SSeett MMaanniippuullaattiioonn

int elementCount(any complexType)
The elementCount() function returns the number of elements in a sparse array,
associative array or set. If an invalid type is passed, a value of zero is return.

int indexExists(any sparseOrAssocArray, any integerOrStringIndex)
The indexExists() function is used with sparse and associative arrays to determine
if a particular array element is defined. Because references to such arrays causes a
new element (whose value is nil) to be implicitly created as a side-effect, the
indexExists() function is often used to make this determination. Finding the first
element in a sparse array serves as one example:

if (indexExists(a, 0) == 1) j = 0;
else j = nextIndex(a, 0);

Another example is to check to see if an entry exists in a table:

if (indexExists(table, key) == 0) return (nil); // doesn't exist
result = table[key];
return (result);

int nextIndex(any sparseOrAssocArray, int subscript)
Because OIL2 arrays have the inherent ability to be sparse, the ability to discover
the various subscripts is needed. An equivalent issue arises with associative arrays.
The nextIndex() function provides this facility. For a given subscript, it returns the
value of the next subscript. If there is no subscript, its return value is zero. Because
associative arrays are guaranteed never to have integer subscripts with a value of
zero, the code to iterate over all of the elements is straightforward:

for(j=nextIndex(a, 0);j != 0;j = nextIndex(a, j)) {
 // do something with element subscripted by j;
}

Sparse arrays that have the potential of having an entry at subscript 0 need to make
an explicit check with the indexExists() function to see if this was the case. This
makes the code somewhat more complex:

if (indexExists(a, 0) == 1) j = 0;
else j = nextIndex(a, 0);
if (indexExists(a, j) != 0) {
 while (j != 0) {
 // do something with index j
 j = nextIndex(a, j);
 if (j == 0) break;
 }
}

string getKeyForIndex(assoc assocArray, int subscript)
When iterating through an associative array using the nextIndex() function, the
actual string key associated with the subscript is often required. This is obtained
using the getKeyForIndex() function. For example:

31

assoc a;
int j, n;
string k;

a["key value"] = 123;
j = nextIndex(a, 0);
k = getKeyForIndex(a, j);
n = a[k]
// k is now "key value" and n is 123

int deleteIndex(any sparseOrAssocArray, any integerOrStringSubscript)
At some point in time, it may be necessary to remove an element that was placed in
a sparse or associative array. This is performed by the deleteIndex() function.

Note: the sparse or associative array is passed by value, so to delete an element
and update an array, the following usage is required:

theArray = deleteIndex(theArray, subscript);

set arrayToSet(array sparseArray)
This convenience function converts a sparse array to a set. The effect is to preserve
the order of the elements in the array but throw away the corresponding integer
subscripts.

array setToArrray(set listOfElements)
This convenience function converts a set into a dense array. The first element of the
resulting array is placed in subscript 0.

any mergeArrays(…)
The mergeArrays() function can operate against a set of either sparse arrays or
associative arrays. It returns a sparse or associative array that represents a merge
of all of the arrays passed as arguments. For a given subscript, precedence is given
to the last elements in the parameter list.

array orderSubscripts(any vector, int sortMode)
The orderSubscripts() function returns an array of subscripts that have been in
ordered in such a fashion so as to permit the elements of vector to be accessed in a
desired order. The sortMode flag can have several settings. For sparse and
associative arrays:

• 0 = ascending by value of element
• 1 = descending by value of element
• 4 = ascending by value of element, case-insensitive comparison
• 5 = descending by value of element, case-insensitive comparison

For associative arrays only:

• 2 = ascending by value subscript key
• 3 = descending by value of subscript key
• 6 = ascending by value of subscript key, case-insensitive comparison
• 7 = descending by value of subscript key, case-insensitive comparison

32

Note: Whenever possible, programmers should always use the orderSubscripts()
function rather than sortArray() because it eliminates the need to create a new
array and potentially duplicate a large amount of data in the process.

Table 3 Predefined constants for orderSubscripts() in OMEcore.o2h

Constant Name Function

FLAG_SORT_ASCENDING Sort order is ascending

FLAG_SORT_DESCENDING Sort order is descending

FLAG_SORT_BY_KEY For associative arrays, sort by the values of the
subscript key, not the values of the elements

FLAG_SORT_CASE_INSENSITIVE Ignore case when comparing sort keys

array sortArray(any vector, int sortMode)
The sortArray() function is a convenience function that uses orderSubscripts().
It returns a new version of vector that is reordered to correspond to the order
selected by sortMode.

Note: Programmers should consider using the orderSubscripts() function rather
than sortArray() whenever possible because it eliminates the need to create a new
array and potentially duplicate data.

33

SSttrriinngg MMaanniippuullaattiioonn

string charToString(int char)
A character constant or previously extracted character (e.g., from midchar()) can
be converted to a string by the charToString() function.

any stringToNumber(string s, int desiredOutputType)
Sometimes a program has a text string that needs to be converted to a numeric
value. The stringToNumber() function can be used to perform this task. The
source string is passed as the first argument and the desired type of the result is
passed as the second (e.g., the keyword int or float or any). If the desired type is
not specified as any, the value will be coerced if necessary. Some examples:

int j;
float f;
any v;
j = stringToNumber("123.45", int); // j = 123
f = stringToNumber("123", float); // f = 123.0
v = stringToNumber("123", any); // v = 123 (an int)
v = stringToNumber("123.45", any); // v = 123.45

array tokenizeString(string source, string delimiters, int convert)
This useful function takes a source string and parses it into tokens. The returned
result is an array of tokens and the first element is in subscript 0. A token is
separated from its fellows by a delimiter character; the set of possible delimiter
characters is passed as the second argument. This routine can also convert tokens
that appear to be numbers to the appropriate representation (e.g., an decimal or
hexadecimal integer or floating point number). This conversion is requested by
passing a value of one (1) as the third argument. If a value of zero (0) is passed,
then such tokens will be returned as a string. The following example parses a
sentence with words separated by white space. White space in this example was
specified to be a space or tab:

words = tokenizeString(sentence, " \t", 0);

As another example, the following parses a comma-separated value list (e.g.,
something that might have been created by saving a Microsoft Excel spreadsheet)
and converts the numeric fields as needed:

data = tokenizeString(line, ",", 1);

Note: double-quotes (") can be used within the source string to enclose elements
that would have otherwise been broken out as individual tokens or converted to a
number.

int length(string)
The length() function returns the length of a string. If passed invalid data, the
value zero is returned.

int calculateStringLength(…)
The function calculateStringLength() computes the total length of a set of strings.
If any non-string argument is passed, the value of –1 will be returned.

34

int findSubstring(string sourceString, string subString)

int findLastSubstring(string sourceString, string subString)
The findSubstring() and findLastSubstring() functions search through the source
string, which is passed as the first argument, for the first (or last, respectively)
occurrence of the indicated sub-string. If the sub-string is not found, then the value
of -1 is returned.4 If the sub-string is found within the source string, the offset
within the source string of the start of sub-string is returned. The first position of
the string is offset 0.

string convertCase(string sourceString, int toLowerCase)
On occasion, it can be useful to convert the letters in a string to a common case.
The convertCase() function can be used to perform this task. If the second
argument. toLowerCase, is the integer value 1, then all uppercase characters are
converted to lowercase; the inverse conversion from lowercase to uppercase can be
selected by passing a value of zero. It is also possible to select a hybrid conversion
that capitalize the start of each word and convert the remaining characters to
lowercase. This is selected by passing a value of 2 for the toLowerCase argument.

Table 4 Predefined constants for convertCase() in OMEcore.o2h

Constant Name Function

FLAG_CONVERT_TO_UPPERCASE All letters to uppercase

FLAG_CONVERT_TO_LOWERCASE All letters to lowercase

FLAG_CONVERT_TO_MIXED_CASE First letter of each word capitalized, all other
letters in lowercase

int midchar(string s, int offset)
The midchar() function returns the character at the indicated offset in the string.
The first position of the string is offset 0. If the offset represents a point outside the
string, then nil is returned. The charToString() function performs the inverse
operation.

string midstr(string source, int startOffset, int fragmentLength)
When working with strings, it is often necessary to extract a portion of a string. The
midstr() function provides this capability. The desired portion is indicated by the
offset of its first character within the source string and the length of the fragment.
The first character of the source string is at offset 0.

string makeAsString(...)
OIL2 allows strings to be concatenated together using the addition operator (+).
The makeAsString() function is used in a fashion similar to string concatenation,

4 The underlying implementation of findSubstring() in the FARGOS/VISTA runtime
is a best-of-breed algorithm that takes advantage of several optimizations that
exploit native CPU instructions.

35

but with a few important differences. It takes arguments of any type, thus it can be
used to convert integers and floating point numbers to displayable strings. It also
creates a single result string, regardless of how many arguments are passed. In this
way, it is more efficient that using the addition operator, which creates an
intermediate result for each addition. An example:

result = makeAsString("count=", count, " firstName=", first, " lastName=", last,
"\n");

string reverseString(string data)
The characters of a string can be reversed by reverseString(). For strings holding
binary data or encoded using a single byte character set, this is a simple inversion:
if the length of the string is n bytes, then byte 0 of the original will be swapped with
byte n – 1, byte 1 will be swapped with position n – 2, etc. The processing of a
string encoded using a multi-byte character set is much more complex because the
order of the bytes comprising an individual multi-byte character cannot be altered.

string stripHTML(string data)
HTML/XML directives can be stripped from a string using the stripHTML() function.
Applications that want to ensure that unexpected HTML directives (a typical hacker
ploy when attempting cross-site scripting) have not been embedded within a user-
provided string can use stripHTML() to remove any such content. If no such
directives exist, the string is returned as-is, thus no duplication is performed—this
makes the function very efficient in the normal case.

string substituteText(string original, assoc searchAndReplaceValues)
For applications that need to perform a global search-and-replace operation on a
string, the substituteText() function is a powerful utility. Its second argument is
an associative array that represents a collection of text patterns that should be
located and the corresponding replacement text. The subscript of each element of
the associative array is the pattern to be found and the value of the element is the
replacement text. An example:

assoc replaceText;
string source, result;
source = "First name=$1 Last name=$2";
replaceText["$1"] = "John";
replaceText["$2"] = "Doe";
result = substituteText(source, replaceText);
// result now = "First name=John Last name=Doe"

The underlying implementation of substituteText() handles multiple replacement
text in an optimal fashion. Rather than make several calls to substituteText()
using individual replacement patterns, it is much more efficient to make a single call
that provides all of the replacement patterns in the searchAndReplaceValues
associative array.

string substituteEnvironmentVariables(string sourceString)
The substituteEnvironmentVariables() function replaces references to
environment variables with their corresponding values. Following long-standing Unix
tradition, an environment variable’s name is introduced by the character “$”.

36

This function provides a very convenient mechanism for applications to utilize
environment variables in configuration data:

 data = send "readLine" to bfr;
 line = substituteEnvironmentVariables(data);

any parseHTTPformData(string urlEncodedData, int desiredType)
Many HTTP-based requests include data that is encoding using the MIME type
"application/x-www-form-urlencoded" (see RFC 1738). The parseHTTPformData()
function parses such data and converts it into either an array or associative array. If
maintaining the order of the elements is significant, then desiredType should be
specified as array. The resulting array will start at subscript 0 and each element will
be an associative array, containing a single keyword/value pair. If the order of the
parameter elements is not significant, it is far more convenient to specify
desiredType as assoc and obtain a single associative array that holds all of the
keyword/value pairs.

 assocA = parseHTTPformData(urlData, assoc);

Note: the parseHTTPformData() function recognizes both "&" and ";" as end-of-
field markers. Hexadecimal escapes (%xx) and plus-as-space conversions are
performed as needed.

array parseHTTPuriData(string uri, string defaultScheme, string defaultAuthority,
string defaultContext)
An HTTP-based application may have occasion to interpret Uniform Resource
Identifiers (URIs). The syntax is specified in RFC 2396. While a fully qualified,
absolute URI is relatively straightforward to decipher, the use of relative URIs is an
extremely valuable tool for content creators and thus are actually more prevalent.
The parseHTTPuriData() function returns a 5-element array that represents the
parse of the uri string.

0. scheme (e.g., "http", "file")
1. authority
2. path
3. query
4. fragment

array parsePathComponents(string pathName)
A path name can be broken into its component elements by the
parsePathComponents() function. If the path is absolute, subscript 0 will be filled
in with either “/” or the drive prefix (e.g., “C:\”). Relative path names are parsed
such that the first element of the result array is in subscript 1.

string pathComponentsToString(array components, int start, int end)
Closely related to parsePathComponents(), pathComponentsToString() creates
a new path name by combining the elements of the components array starting at the
subscript indicated by start and ending at the subscript indicated by end.

http://www.ietf.org/rfc/rfc1738.txt
http://www.ietf.org/rfc/rfc2396.txt

37

string relativePathToAbsolute(string rootDir, string relativePath)
Many relative path specifications include the use of “..” to traverse parent directories.
The relativePathToAbsolute() function safely processes such relative paths in
relation to a given root directory. The result string is an absolute path that is
guaranteed to be rooted at the directory specified by rootDir.

38

BBiitt MMaanniippuullaattiioonn
Several useful functions are available to significantly ease the complexity of bit
manipulation. The concatBits() routine is especially useful when dealing with the
bit-centric nature of a dense encoding scheme such as Macromedia’s Shockwave
Flash file format.

These routines operate against an idealized model of a bit field. The rightmost, least
significant bit is identified as bit position 1. This is in contrast to a popular
convention that labels that bit position as 0 and consequently permits easy
computation of the value of each bit position: position n has value 2n. The use of 1
to identify the least significant bit position only complicates the computation slightly:
bit position n has a value of 2n-1. The benefit is that a value of 0 can be used by
some routines to indicate that no bit was set.

Bit field data is most frequently obtained from an integer, but integers can only hold
a limited number of bits. For example, by definition, a 32-bit integer is limited to a
maximum of 32-bits. Arbitrarily long bit fields can be manipulated using strings.
When bit fields are provided as integers, issues related to an underlying system’s
storage layout byte order are automatically handled.

int lowBit(int integerValue)
The lowBit() function returns the lowermost bit that is set in an integer value. Bits
are numbered from 1, thus the high-order bit of a 32-bit integer would be 32. If no
bits are set, the value 0 is returned. For example, the lowermost bit of the value
136 would be identified as 4.

int highBit(int integerValue)
The highBit() function returns the uppermost bit that is set in an integer value. Bits
are numbered from 1, thus the high-order bit of a 32-bit integer would be 32. If no
bits are set, the value 0 is returned. For example, the uppermost bit of the value
136 would be identified as 8.

int mergeBits(int src, int srcOffset, int srcLen, int mergeInto, int mergeOffset)
The mergeBits() function copies from the integer value src a contiguous sequence
of srcLen bits from bit positions srcOffset through bit position srcOffset + srcLen – 1.
The returned result value is a copy of the mergeInto argument that has been
modified by replacing bit positions mergeOffset through mergeOffset + srcLen – 1
with the bit sequence copied from the src argument. The mergeBits() function can
be used to perform many bit manipulation operations that traditionally are achieved
through a combination of masking and bi-directional shifting.

array concatBits(any sourceBitData, int bitsToAdd, any bitState)
The concatBits() function is used to build up a sequence of arbitrarily long bit
fields. The bit field to be added is extracted from the sourceData as a contiguous
sequence of bits starting at bit position bitsToAdd and onwards to the end at bit
position 1. The bitState argument is normally passed the result from a prior call to
concatBits(), but is specified as nil for an initial invocation.

The result from concatBits() is a two-element array. The first element (at subscript
0) is a string that contains the concatenated bit fields. If needed, the string is

39

padded on the right with 0 bits to fill out the last byte. The second element of the
array (subscript 1) is an integer that indicates the number of valid bits present. A
value of 21 would correspond to a 4 byte string, whose last byte (offset + 3) would
have valid data in bit positions 8 through 4 and 0 bits in positions 3, 2 and 1.

The sourceBitData argument is usually provided as an integer, but it may also be
specified as a string. Issues related to native byte order storage layout for integers
are automatically handled when an integer is passed, but strings are accessed as-is.
Bit position 1 of a string occurs in the last byte of the string, thus a 10-byte long
string will have bit position 1 occur in offset +9 and bit 80 (the uppermost bit) will
occur in offset +0.

DDeebbuuggggiinngg

int display(...)

int debugDisplay(int debugLogLevel,…)
These functions write the data passed to standard out. The debugDisplay() routine
only outputs the data if the indicated log level is selected in the OMElogLevel mask.

The number of elements displayed is returned; if debugDisplay() does not output
any data because the appropriate debug log flag was not set, then 0 is returned to
indicate no data was output.

Table 5 Predefined constants for debugDisplay() in OMEcore.o2h

Constant Name Function

debugLogLevel0 Log level 0

debugLogLevel1 Log level 1

debugLogLevel2 Log level 2

debugLogLevel3 Log level 3

int displayAsHex(...)

int debugDisplayAsHex(int debugLogLevel, …)
Similar in behavior to makeAsHexString(), writes any passed string data as
hexadecimal characters to standard out. The debugDisplayAsHex() routine only
outputs the data if the indicated log level is selected in the OMElogLevel mask.

The number of elements displayed is returned; if debugDisplayAsHex() does not
output any data because the appropriate debug log flag was not set, then 0 is
returned to indicate no data was output.

any displayVisible(string)
Displays on standard output only the alphanumeric characters in the string, stripping
out any non-displayable (e.g., control) characters.

40

assoc getSystemInfo()
A significant number of profiling counters and configuration parameters are made
available by instances of the C++ class OMEprofileCounter. A set of standard
attributes is defined in the section below entitled "System Information Attributes". A
snapshot of the entire current collection of counters and attributes can be retrieved
by the getSystemInfo() function.

any getSystemInfoAttribute(string attributeName)
The getSystemInfoAttribute() function is similar to getSystemInfo(), except
that it returns the value of the single attribute identified by attributeName.

41

DDaattaa EEnnccooddiinngg
Data encoding routines transfer data into an alternate format that is more
appropriate for the application's need. Almost without exception, these
transformations are reversible and do not lose information in the process, but the
size of the converted data will be different from that of the original. While encryption
functions have similar attributes, they are used to hide information rather than make
it more readily manipulated.

string asciiToBase64(string data, int breakIntoLines)
Binary data is often encoded for transport over 7-bit data streams (e.g., Simple Mail
Transfer Protocol) using the base 64 encoding, which converts every 3 input bytes
into 4 output bytes. The function asciiToBase64() converts an arbitrary string of
data to a base 64 encoding. If the breakIntoLines argument is not specified as 0,
then the data will be automatically formatted into carriage return/line feed-
terminated lines of maximum length 72. The base 64 content transfer encoding is
specified in section 5.2 of RFC 1521.

string base64ToASCII(string)
The base64ToASCII() function converts base 64-encoded data (such as that
prepared by the asciiToBase64() function) into its binary equivalent. The base 64
content transfer encoding is specified in section 5.2 of RFC 1521.

string compressString(string data)
The compressString() function compresses the passed string and returns a string
which is expected to be smaller in size. The compressed data is annotated with
information that indicates the size of the original string. Compressed data can be
restored to its original content by the uncompressString() function.

string gzipString(string data)
The gzipString() compresses a string into a format specified by RFC 1952. The use
of compressString() is always preferred to gzipString() for two reasons: it
produces smaller results and is more efficient to uncompress.

string uncompressString(string data)
The uncompressString() function converts data that was previously generated by
compressString() into its original form.

string gunzipString(string data)
The gunzipString() function restores data that was previously compressed by a
gzip-equivalent (RFC 1952 compliant) application.

string makeAsHexString(…)
The makeAsHexString() function is almost identical to makeAsString(), with the
exception that any string arguments are converted to hexadecimal strings. Each
byte of such a string is converted to the 2 hexadecimal characters that correspond to
its value. For example, the byte value 0 is converted to “00” and the byte value 10
(an ASCII new line character) is converted to “0d”.

http://www.ietf.org/rfc/rfc1521.txt
http://www.ietf.org/rfc/rfc1521.txt
http://www.ietf.org/rfc/rfc1952.txt
http://www.ietf.org/rfc/rfc1952.txt

42

string hexToBinary(string hexString)
The hexToBinary() function is the logical inverse of the makeAsHexString()
function. It converts a hex string into the corresponding binary data.

Note: the base 64 encoding is a more efficient (a 3:4 vs. 1:2 expansion ratio)
textual encoding of binary data than hexadecimal strings (see asciiToBase64() for
details).

string safeURI(string textString)
RFC 2396 declares that URIs are not permitted to have several characters, such as
delimiters like a space or a tab. The safeURI() function converts a text string into a
string safe for use in an URI. The inverse operation is performed by the
convertURIescapes() function.

string convertURIescapes(string textString)
Uniform Resource Identifiers are not permitted to contain several characters, most of
which are used as delimiters. When a resource uses such characters, the prohibited
characters must be escaped (the safeURI() function performs this operation).
Applications that are provided raw URIs can convert any embedded escape
sequences by using the convertURIescapes() function.

any decodeData(string)
The decodeData() function converts data that was previously encoded using the
encodeData() function.

array decodeFirstElement(string data)
The decodeFirstElement() function is almost identical to decodeData(). The
difference is that it returns a two-element array. The first element (at subscript 0) is
the decoded data, which is the same as would have been returned by
decodeData(). The second element of the array holds the offset in the string
where the next data element would begin.
The decodeFirstElement() function is used in situations where several strings,
each of which had been individually prepared by encodeData(), were concatenated.

int decodeStringAsLength(string data)
A 4-byte string previously encoded by encodeLengthAsString() is decoded into an
integer by the decodeStringAsLength() function.

string encodeData(any data, int version)
Any OIL2 data element can be encoded into a string using the encodeData()
function. The second argument specifies the encoding version to be used. There are
two encoding schemes always available: version 1 is the default set of encoding
routines and version 2 is a compressed version that can be used when encoding size
is more important than speed. Several other encoding schemes may be available
locally, but they are not guaranteed to be universally available. The
listEncodingVersions() function can be used to obtain information about locally
supported encoding versions.

http://www.ietf.org/rfc/rfc2396.txt

43

string encodeLengthAsString(int val)
An integer value can be converted into a 4-byte network-byte order (MSB … LSB)
string using encodeLengthAsString(). It can be decoded by the
decodeStringAsLength() function.

array listEncodingVersions()
The list of available encoding versions can be obtained by the
listEncodingVersions() function.

44

EEnnccrryyppttiioonn
Encryption involves the scrambling of data so that it is not readable by third parties.
Decryption is the inverse process that restores the jumbled data to its original state.
For performance, the standard FARGOS/VISTA encryption facilities use symmetric (or
shared) key algorithms, which means that the same key is used to encrypt the data
as is used to decrypt it. Since both the sending and receiving party need to have the
same key in order to successfully exchange encrypted data, an interrelated issue
involves the exchange of the shared, yet secret, key without having its value
disclosed to a third party. This key exchange is made possible using a public key
exchange algorithm. Public key encryption algorithms break a key into two pieces:
a private part, which must remain secret, and a public part, which can be disclosed
to third parties without compromising the system.

array makePublicKeyPair(string secret)
The makePublicKey() function returns a two-element array that represents a public
key pair:

0 private key

1 public key

The string secret is used to generate a unique public key pair.

array makeSessionKey(string publicKey, string randomData)
For performance, bulk data is encrypted using a symmetric encryption algorithm.
For security, the key to be used should be randomly chosen. The
makeSessionKey() function returns a two-element array:

0. encrypted session key
1. session key

The publicKey argument is the value of the public key (subscript 1 of the result
array) obtained from a prior call to makePublicKeyPair(). The randomness of the
generated key is obtained from the randomData argument. It should be a 128-bit
(16 byte) string. The makeRandomKey() function is the preferred mechanism to
generate this data, since it will automatically take advantage of hardware support for
random number generation.

The session key (subscript 1) should be used as the shared key for a symmetric
encryption algorithm (i.e., the secret for passed in call to the initializeCipher()
function). The encrypted session key (subscript 0) can be forwarded across the
network and decoded using the decryptSessionKey() function.

string decryptSessionKey(string localPrivateKey, string encryptedKey)
A session key previously encrypted by makeSessionKey() is decrypted using the
decryptSessionKey() function. The encryptedKey holds the data that was the first
element (subscript 0) of a prior makeSessionKey() call by a remote host. The
localPrivateKey is the private key (subscript 0) from makePublicKeyPair() call.

array initializeCipher(string secret, int dir, string initVector)
Before a cipher can be used, it must be initialized. The initializeCipher() function
performs the initialization. On some platforms with support for cryptographic

45

hardware, this will set up the hardware device. The argument secret is the key used
to perform encryption or decryption. The dir argument specifies what operation is
being performed. Two values are permitted:

Constant Name Value Function

FLAG_ENCRYPT 1 encrypt

FLAG_DECRYPT 2 decrypt

The initVector argument holds an initialization vector for the cipher. Initialization
vectors permit additional permutations of an encrypted result: for a given item of
data and secret key, different initialization vectors will yield different encryption
results. The same initialization vector must be used for decryption. The initialization
vector must be a 32-byte string of displayable hexadecimal characters (0 – 9, a – f).
The 32-byte string of hexadecimal characters will be converted to a 16-byte (or 128-
bit) vector. The design of the initialization vector derives from the specification of
the Advanced Encryption Standard. Although OIL2 has no trouble manipulating
binary strings, many other implementation languages do not have the same
capabilities. Thus, two advantages of this representation are that regardless of the
character set of the source file (e.g., EBCDIC), the same initialization vector will be
obtained and it is easy to represent binary information.

After a cipher has been initialized, depending on the direction indicated by the dir
parameter, the respective encryptMessage() or decryptMessage() function can
be used repeatedly. When a cipher is no longer needed, it should be freed using the
freeCipher() function. The return result from initializeCipher() is an array, but it
should be viewed as an opaque data structure.

int freeCipher(array cipherID)
The freeCipher() function frees all data structures (and any cryptographic hardware
resources) associated with a cipher that was previously allocated by a
initializeCipher() call.

string decryptMessage(array cipherData, string message)
The decryptMessage() function decrypts data previously generated by a call to
encryptMessage() (potentially, on a different host or at some previous point in
time) using a previously initialized cipher. The argument cipherData is obtained from
a call to initializeCipher().

string encryptMessage(array cipherData, string message)
The encryptMessage() function encrypts an arbitrary string of data using a
previously initialized cipher. The data, message, will automatically be logically
padded as needed to end on a 16-byte block boundary. The required number of
blocks will automatically be encrypted to traverse the entire length of the data and
any padding to needed to end on a 16-byte block boundary will be performed. The
original message string remains unmodified and the pad operation may copy a
maximum of 15 bytes of data, thus programmers need not be concerned about the
size of the message or performing padding on their own. The argument cipherData
is obtained from a call to initializeCipher().

http://csrc.nist.gov/encryption/aes/

46

string makeRandomKey(int bits)
The makeRandomKey() function can be used to generate several random bytes of
data. If the underlying native host operating system has hardware support for
random number generation, it is automatically used.

int getRandomInteger(int upperBound)
Returns a random 32-bit integer between 0 and the passed upperBound argument.
On platforms that support it, the random integer is obtained from a random number
generator device.

Note: the makeRandomKey() function generates a random set of bytes as a
string.

string SHA1hash(string data)
The SHA1hash() function performs a Secure Hash Algorithm 1 over the passed data
string and returns a 160-bit (20 byte) string. See Federal Information Processing
Standard 180-1 for the specification.

string MD5hash(string data)
The MD5hash() function computes a message digest over the passed data string
and is used by several Internet RFCs. See RFC 1321 for the specification of the
algorithm.

http://www.itl.nist.gov/fipspubs/fip180-1.htm
http://www.itl.nist.gov/fipspubs/fip180-1.htm
http://www.ietf.org/rfc/rfc1321.txt

47

FFiillee SSyysstteemm IInnffoorrmmaattiioonn

assoc getFileInfo(string fileName)
Returns an associative array of attributes that describe the selected file; nil is
returned if there is an error.

• type
• fileName
• bytes
• lastModifiedLocalTime
• lastModified

Known types include:

• regularFile
• symbolicLink
• directory
• characterDevice
• blockDevice
• fifo
• socket

array listDirectory(string directoryName)
The listDirectory() function returns a list of the files in the specified directory; nil is
returned if the directory does not exist.

int makeDirectory(string directoryName)
A new directory can be made in the local file system using the makeDirectory()
function. A return value of zero indicates success.

int removeDirectory(string directoryName)
An existing empty directory in a local file system can be removed with the
removeDirectory() function. A return value of zero indicates success.

int renameFile(string orgFileName, string newFileName)
An existing local file can be renamed with the renameFile() function. A return
value of zero indicates success.

int unlinkFile(string fileName)
The directory entry of an existing file can be removed by using the unlinkFile()
function. A return value of zero indicates success.

48

TTiimmee MMaanniippuullaattiioonn

int timeDifference(assoc absoluteTime1, assoc absoluteTime2)
Returns the difference in seconds between two absolute times.

assoc convertLocalRelativeTimeToAbsolute(int relativeTime, int toGMT)
On a given system, a local relative time (obtained from a call on the local system to
getLocalRelativeTime()) can be converted to an absolute time with this function.
A relative time value obtained by a call to getLocalRelativeTime() on a remote
system will have undefined semantics within the local system. Local interpretation of
such a remote value should be viewed as invalid. In contrast, an absolute time can
be transferred between systems without altering its meaning. An absolute time can
be relative to the local time zone or GMT. If the second argument, toGMT, is non-
zero, the resulting time is relative to GMT instead of the local time zone.

The absolute time is represented as an associative array whose subscript keys are:

• seconds (0 – 61, to handle leap seconds)
• minutes (0 – 59)
• hours (0 – 23)
• dayOfMonth (1 – 31)
• month (1 = January, 2 = February, etc.)
• year
• dayOfWeek (0=Sunday, 1 = Monday, etc.)
• dayOfYear (0 – 365)
• isDST (Boolean)
• gmtDelta (in seconds)
• localTimezoneName (string)

Note: on most systems, the TZ environment variable influences the time zone
name. Because of the inherent variability of time zone names, the value of gmtDelta
provides the definitive identification of time zone.

assoc convertRFC1123date(string)
This function is the counterpart to rfc1123Date() and converts strings that conform
to the date specification in RFC 1123 to an absolute time. This routine does not
assume that the input string strictly conforms to the RFC 1123 specification, so it is
year 10000 compliant. It will tolerate leading white space, day names longer than 3
characters, missing commas, month names longer than 3 characters, and extra
white space between fields.

int getLocalRelativeTime()
Returns the current local relative time as a 32-bit integer. The value has a
granularity of seconds but is only valid within the confines of the local system. Due
to its compact size, it is useful in many situations in which a program is only
interested in a measure of elapsed time. It must be converted to an absolute time
by the convertLocalRelativeTimeToAbsolute() function before it can be
interpreted as a time/date value that can be have meaning to another system.

http://www.ietf.org/rfc/rfc1123.txt
http://www.ietf.org/rfc/rfc1123.txt

49

int getRelativeMilliseconds()
For timing purposes, the getRelativeMilliseconds() function provides a finer
granularity measurement of time than getLocalRelativeTime(). The value
returned by getRelativeMilliseconds() is not interpreted directly. A measurement
of elapsed time in milliseconds is obtained by calculating the difference in the values
returned by two calls to getRelativeMilliseconds().

Note: an alternative that also provides millisecond-level granularity is to retrieve
the value of the millisecondsUp system information attribute:

ms = getSystemInfoAttribute(“millisecondsUp”);

The retrieved value for millisecondsUp indicates the number of milliseconds elapsed
since the FARGOS/VISTA-based application was initialized, thus it always starts with
an initial value of 0. There is no mechanism provided to convert a millisecondsUp
value to an absolute time reference.

string iso8601Date(assoc absoluteTime)
The iso8601Date() function is similar to the rfc1123Date() function, but
generates a different output format (ISO 8601) that is used by WebDAV-enabled
applications (see Appendix 2 of RFC 2518). Such dates appear similar to:

yyyy-mm-ddThh:mm:ss+tzOffset

string rfc1123Date(assoc absoluteTime)
Converts an absolute time to a string that conforms to RFC 1123. In short, a string
that looks like:

Day, dd Mon yyyy hh:mm:ss TZN

where:

• Day is a 3 character abbreviation of the day of the week (e.g., Sun, Mon, Tue,
etc.)

• dd is a 2 character day of the month (e.g., 01 - 31)
• Mon is a 3 character abbreviation of the month name (e.g., Jan, Feb, Mar,

etc.)
• yyyy is a 4 character representation of the year (e.g., 2000).
• hh is a 2 character representation of the hour (e.g, 00, 01, …, 13, 23)
• mm is a 2 character representation of the minute (e.g., 00 - 59)
• ss is a 2 character representation of the seconds (e.g., 00 - 59)

The benefit of this format is that each field appears at a fixed position; however,
programmers that exploit this will end up with a year 10000 problem.

Note: on most systems, the TZ environment variable influences the time zone
name.

http://www.ietf.org/rfc/rfc2518.txt
http://www.ietf.org/rfc/rfc1123.txt

50

AAcccceessss CCoonnttrrooll LLiissttss
All objects within a FARGOS/VISTA environment have a distinct access control list
associated with them. Whenever an object is created, it must be provided with an
initial access control list.

assoc makeDefaultACL()
The makeDefaultACL() function is the most frequently used access control list-
related function. It permits the creator of the object full access and disallows all
others.

assoc addUserToACL(assoc existingACL, string userInfo, assoc permittedMethods)
An ACL can be extended using the addUserToACL() function.

assoc makePermitEveryoneACL()
The makePermitEveryoneACL() function creates an ACL that permits the owner of
the object and all others full access.

assoc createACLthatAllowsOthers(...)
Occasionally, the default ACL prepared by makeDefaultACL() is too restrictive
because it does not permit any user other than the owner of an object to access it.
The function createACLthatAllowsOthers() creates an ACL that allows other users
to access only the methods that were explicitly specified as arguments to the
function. If no arguments are provided, it is effectively the equivalent of
makeDefaultACL().

assoc createACLthatDisallowsOthers(...)
Occasionally, the default ACL prepared by makeDefaultACL() is much too
restrictive because it does not permit any user other than the owner of an object to
access it. The function createACLthatDisallowsOthers() creates an ACL that
allows other users to access any of an object's methods except for the methods
explicitly specified as arguments to the function. If total access to an object is
desired, then no arguments would be passed and this is effectively the equivalent of
makePermitEveryoneACL(). Some examples:

fullAccessACL = createACLthatDisallowsOthers();
dontAllowDeleteACL = createACLthatDisallowsOthers("deleteYourself", "delete");

oid createNewOIDthatOnlyAllowsOthers(oid obj, array permittedMethods)
An object has no control over its initial access control list as that was prepared by
the creator of the object. Usually, this is not an issue; however, objects that provide
services can find it useful to have special access control lists that only permit the
invocation of a few methods of an object. The
createNewOIDthatOnlyAllowsOthers() function provides a means by which an
object can hand out references to itself that restrict what methods users can invoke
against it. The first argument is an object ID that refers to the object and the

51

second is an array of permitted method names. The resulting object ID will only
permit the invocation of methods whose names were present in the array.

UUsseerr AAuutthheennttiiccaattiioonn

int becomeUser(string userName, string password)
The user associated with a thread can be set with the becomeUser() function. It
takes two arguments, the user’s login name and the associated authentication data,
which is typically a password. There are 3 possible return values:

• -1 – the user is unknown
• 0 – although the user is recognized, the provided password data did not

enable the user to be authenticated
• 1 – the user is known and was successfully authenticated

string becomePseudoUser()
A unique, anonymous pseudo user can be set as the user associated with a thread.
This is useful for service providers that need to perform operations on behalf of
unauthenticated users and wish to prevent granting access to objects that would
normally be accessible by the service provider but should not be accessible by
anonymous users. The name of the new pseudo user is returned.

SSeerrvviicceess

int registerService(string serviceName, oid obj, int exportable)
Registers the indicated object as a named service. Named services can be used as
the targets of OIL2 send statements. The object Id of a named service can also be
retrieved using the lookupLocalService() function. The third argument indicates if
the service should be made known to other systems participating in the
FARGOS/VISTA-based infrastructure.

int unregisterService(string serviceName, oid obj)
Unregisters a named service that was previously registered by a registerService()
call.

oid lookupLocalService(string serviceName)
Returns the object Id of a named service; nil if there is no such corresponding
object. The OIL2 send statement permits the use of a named service as a
destination, so this routine is not always needed. It can be useful for performance
reasons; for example, the lookup of the service can be done once outside the body of
a loop.

Note: object Ids are valid anywhere in the FARGOS/VISTA infrastructure, but a
named service often is only registered locally. The lookupLocalService() function is
a way to obtain a reference to a local service that can subsequently be passed onto
another system. The AnnounceServices class can export such services to peer
systems.

52

assoc listRegisteredServices()
Returns a list of the names of all locally registered services. Each entry is
subscripted by the name of the service; the value of the entry is the object Id of the
service provider.

array listRemoteSystems()
Returns an array of object Ids corresponding to the ObjectCreator object on each
known remote system.

15. System Information Attributes
A large number of runtime statistics are maintained during the operation of the
system. C++ programmers can register additional instrumentation using the C++
class OMEprofileCounter(). Current values can be retrieved via getSystemInfo()
or getSystemInfoAttribute() functions. C++ programmers can also utilize the
lower-level routines such as OMEprofileCounter::getValueOfCounter(). Because
the set of available of statistics can be extended by applications, the table below
cannot reflect the entire list of statistics available.

Attribute Name Description

IOmaxReadBuffer Maximum number of bytes retrieved by
IOobject:readBytes if a length was not specified.

IOmaxVectors

Maximum number of vectors that can be written by an
atomic writev() (or equivalent) function call.
IOobject:writeVectorOfBytes can handle an
arbitrary number of vectors, but it may be required to
make repeated calls to writeVectorOfBytes(). If
IOmaxVectors is small (e.g., 16) and the vector to be
output is composed of numerous but short strings, it
can be beneficial to consolidate the vector by
concatenating the strings and thus avoid many
repeated calls to writeVectorOfBytes.

IOtotalDescriptorsCreated Total number of I/O descriptors created (IOobject).

IOtotalDescriptorsDeleted
Total number of I/O descriptors deleted (IOobject).
Total descriptors in use = IOtotalDescriptorsCreated –
IOtotalDescriptorsDeleted.

IOtotalEmulatedWriteVectors

Total number of writeVectorOfBytes converted to a
sequence of writeBytes calls because underlying O/S
or I/O descriptor technology does not support
scatter/gather operations. The optimal value is zero.

IOtotalFileReads Total number of read() calls on a file
(IOobject:readBytes).

IOtotalFileSelectRead Total number of selectForRead calls on a file
(IOobject:selectForRead).

IOtotalFileSelectWrite Total number of selectForWrite calls on a file
(IOobject:selectForWrite).

IOtotalFileWriteVectors Total number of writev() (or equivalent) calls on a file
(IOobject:writeVectorOfBytes).

IOtotalFileWrites Total number of write() calls on a file
(IOobject:writeBytes).

53

Attribute Name Description
IOtotalFilesCreated Total number of files opened.

IOtotalFilesDeleted Total number of files closed. Number of files in use =
IOtotalFilesCreated – IOtotalFilesDeleted.

IOtotalSocketRecvFroms Total number of recvfrom() calls on a socket
(IOobject:receiveDatagram).

IOtotalSocketRecvs Total number of recv() calls on a socket
(IOobject:readBytes).

IOtotalSocketSelectRead Total number of selectForRead calls on a socket
(IOobject:selectForRead).

IOtotalSocketSelectWrite Total number of selectForWrite calls on a socket
(IOobject:selectForWrite).

IOtotalSocketSendTos Total number of sendto() calls on a socket
(IOobject:sendDatagram).

IOtotalSocketSends Total number of send() calls on a socket
(IOobject:writeBytes).

IOtotalSocketWriteVectors Total number of writev() calls on a socket
(IOobject:writeVectorOfBytes).

IOtotalSocketsAccepted Total number of incoming connections accepted.
IOtotalSocketsCreated Total number of all sockets created.

IOtotalSocketsDeleted Total number of all sockets deleted. Total sockets in
use = IOtotalSocketsCreated – IOtotalSocketsDeleted.

IOtotalUnixSocketsCreated Total number of Unix file domain sockets created.

IOtotalUnixSocketsDeleted

Total number of Unix file domain sockets deleted.
Total Unix file domain sockets in use =
IOtotalUnixSocketsCreated –
IOtotalUnixSocketsDeleted.

IOtruncReadBuffer

Number of times an explicitly allocated
IOobject:readBytes buffer had to be truncated
because there was insufficient data available. The
optimal value is zero.

IOtruncReadDatagramBuffer

Number of times an explicitly allocated
IOobject:receiveDatagram buffer had to be
truncated because there was insufficient data
available. The optimal value is zero.

alternativeMethodTotal

Total number of methods that have multiple
implementations (typically a result of being specified
as unique so that the actual implementation is
selected based on the arguments passed at runtime).

classTotal Total number of classes currently loaded in the local
FARGOS/VISTA Object Management Environment.

cpusAvailable
The number of CPUs administratively allocated to the
FARGOS/VISTA Object Management Environment
process.

hostName The name of the local host.

54

Attribute Name Description

maximumCPUs

The maximum number of CPUs the FARGOS/VISTA
Object Management Environment is configured to be
capable of utilizing. It does not mean that such CPUs
exist. The cpusAvailable attribute will always be
between 1 and the value of maximumCPUs.

methodTotal
The total number of methods currently loaded in the
local FARGOS/VISTA Object Management
Environment.

millisecondsUp
The total number of milliseconds that have elapsed
since the FARGOS/VISTA-based process began
execution.

minWorkForMultiprocessing

The minimum number of works units that must be
queued before an additional CPU will be utilized. For
maximum utilization of multiple CPUs, the value of
minWorkForMultiprocessing can be set to 1; however,
that overall efficiency can be impacted. It takes some
work to both start and stop a CPU (perhaps inertia is a
useful analogy) and simultaneous operation of multiple
CPUs invariably creates contention for locks on critical
global data structures. If there is insufficient work
available for true parallel execution, two CPUs will
interfere with each other to such an extent as to make
the system run slower than if there was only a single
CPU.

nameSpaceTotal
The total number of distinct name spaces defined in
the local FARGOS/VISTA Object Management
Environment.

processID
The process Id assigned by the native host operating
system to the local FARGOS/VISTA Object
Management Environment.

slicesOnKernelThread-0

Total number of time slices executed by the
FARGOS/VISTA Object Management Environment
scheduler utilizing the native operating system's
primary kernel thread. If more than one CPU is being
used (see cpusAvailable), there will be a corresponding
slicesOnKernelThread-N attribute for each additional
CPU 1 through (cpusAvailable – 1).

stopFlag
Current run state of the FARGOS/VISTA-based
application. A non-zero value means a stop has been
requested.

totalArrayDeepCopies
The total number of times a sparse array had to be
duplicated as a consequence of a copy-on-write
operation. The optimal value is zero.

totalAssocDeepCopies
The total number of times an associative array had to
be duplicated as a consequence of a copy-on-write
operation. The optimal value is zero.

totalOIDsCreated
Total number of object Ids created or imported during
the current execution of the FARGOS/VISTA-based
application.

55

Attribute Name Description

totalOIDsDeleted

Total number of object Ids deleted during the current
execution of the FARGOS/VISTA-based application.
The total number of objects known to the application is
no more than totalOIDsCreated – totalOIDsDeleted;
however, it might be less than that.

totalObjectsCreated
Total number of objects created or imported during
the current execution of the local FARGOS/VISTA
Object Management Environment process.

totalObjectsDeleted

Total number of objects deleted or removed during the
current execution of the local FARGOS/VISTA Object
Management Environment. The total number of
objects resident can be computed as
totalObjectsCreated – totalObjectsDeleted. Note that
the total number of objects resident is not the same as
the total number of objects known to the system—
many other objects can be either paged out (e.g.,
PersistentObjects) or located within a remote peer.

totalSetDeepCopies
The total number of times a set had to be duplicated
as a consequence of a copy-on-write operation. The
optimal value is zero.

totalStringDeepCopies
The total number of times a string had to be
duplicated as a consequence of a copy-on-write
operation. The optimal value is zero.

totalThreadsAllowed

The total number of times the execution of a method
would have been delayed if not for the fact it was
permitted to proceed because the method had been
previously allowed (e.g., via an allow() or equivalent
call).

totalThreadsCreated

The total number of threads created during the
execution of the local FARGOS/VISTA Object
Management Environment. This has a strong
correlation with the number of methods executed.

totalThreadsDelayed

The total number of times the execution of a method
was delayed. This is usually because another thread
was active upon the same object. The optimal value is
zero.

totalThreadsDeleted

The total number of threads terminated during the
execution of the local FARGOS/VISTA Object
Management Environment. The total number of
threads in use is equal to totalThreadsCreated –
totalThreadsDeleted.

totalTimeEventCalls

Total number of times the timer queue was evaluated.
This monotonically increasing value should be
interpreted in the context of millisecondsUp. The
efficiency of the system is proportional to
totalTimeEventCalls / millisecondsUp.

56

Attribute Name Description

totalWaitForIOcalls

Total number of times the FARGOS/VISTA-based
application checked to see if pending I/O operations
were ready to proceed. This monotonically increasing
should be interpreted in the context of millisecondsUp.
The efficiency of the system is proportional to
totalWaitForIOcalls / millisecondsUp; smaller values
are better.

vista_cpu
A string identifying the CPU architecture for which the
FARGOS/VISTA-based executable was compiled (e.g.,
“i386”, “sparc”, “i86pc”).

vista_major_version
An integer identifying the major version number of the
FARGOS/VISTA release. Corresponds to field V in the
version Id V-N.R.

vista_minor_version
An integer identifying the minor version number of the
FARGOS/VISTA release. Corresponds to field N in the
version Id V-N.R.

vista_os
A string identifying the native operating system for
which the FARGOS/VISTA-based executable was
compiled (e.g., “Linux”, “SunOS”, “OpenBSD”)

vista_release_version
An integer identifying the release version number of
the FARGOS/VISTA release. Corresponds to field R in
the version Id V-N.R.

	Introduction
	Model of Operation
	Development Languages
	Deploying New Applications

	T
	The VISTA Daemon
	
	The Boot Process

	Linking a Custom VISTA Executable

	Defining New Classes
	Security
	
	Access Control Lists
	Users
	Encryption

	I
	Input/Output Transport Schemes
	Data Encoding
	String Encoding Formats

	External Applications
	Working with Objects
	Working with Threads
	Reflection and Meta Data
	G
	Getting Started
	Object Management Environment Classes
	OIL2 Class Documentation
	Classes in Namespace Experimental

	Standard Library of OIL2-Callable Functions
	
	Language Support
	Array and Set Manipulation
	String Manipulation
	Bit Manipulation
	Debugging
	Data Encoding
	Encryption
	File System Information
	Time Manipulation
	Access Control Lists
	User Authentication
	Services

	System Information Attributes

