
Version: 7/24/2001 6:09 PM

FARGOS/SolidState

HTTP Server Adapter
User’s Guide

NOTE: The information contained within this
document refers to a beta release of the product. Some
Application Programming Interfaces may be altered in
response to experiences and suggestions obtained in the
field.

ii

FARGOS/SolidState HTTP Server Adapter User’s Guide
FARGOS Development, LLC
757 Delano Road
Yorktown Heights, NY 10598
http://www.fargos.net
mailto:support@fargos.net

Copyright 2000 – 2001 FARGOS Development, LLC

Notice of Rights
All rights reserved. This document may be rendered into whatever form is useful for the
user, including electronic transmission or printing, so long as the content is not altered.

Trademarks
FARGOS/VISTA, FARGOS/SolidState and FARGOS/SolidConnection are trademarks of
FARGOS Development, LLC.

Abbreviations
FARGOS Development, LLC is a Limited Liability Company registered with the State of
New York. It is required to identify itself as such in its name, hence the “, LLC” suffix. For
purposes of readability in this document, the “, LLC” suffix is sometimes dropped. The
phrase “FARGOS Development” always denotes “FARGOS Development, LLC” and is not
intended to suggest any alternate form of organization.

Notice of Liability
Information in this document is distributed on an “As Is” basis, without warranty. While
every precaution has been taken in the preparation of this document, FARGOS
Development, LLC shall not have any liability to any person or entity with respect to any
loss or damage caused or alleged to be caused directly or indirectly by the instructions
contained within this document or by the computer software or hardware products described
in it.

http://www.fargos.net/
mailto:support@fargos.net

iii

Contents
An Overview of FARGOS/SolidState .. 1
Redundant Servers vs. Faults Tolerated.. 2
Designing Byzantine-Fault-Tolerant Applications.. 2
The Deployment Model .. 3
Byzantine-Fault-Tolerant Sessions .. 5
Implementation of Byzantine-Fault-Tolerant Transactions... 6
Performance vs. Lock-step Synchronization .. 8
Performance Implications of a Failure ... 9
Calculator Example ... 11
Shopping Cart Example... 14

1

1. An Overview of FARGOS/SolidState
FARGOS/SolidState is a technology that implements support for Byzantine-fault-tolerant
transactions. This short sentence carries a lot of information content within the phrase
“Byzantine-fault-tolerant” and readers who are not practicing computer scientists may not be
completely familiar with the nuances.

Fault-Tolerant Systems
A fault-tolerant system is able to handle the occurrence of a fault without causing the system
to stop or produce an incorrect result. Most systems are not fault-tolerant and the
occurrence of a single fault does cause them to stop functioning. A simple example of such a
scenario is a PC running a word processing application. If the power fails while a user is
typing, his work is lost.
Creating a fault-tolerant system is a complex task and requires some level of redundancy.
The basic premise is that a redundant system can take over when the original system has
failed. Most efforts to utilize redundancy result in only highly available, but not fault-
tolerant systems. Highly available systems provide a means to return the system to an
operational state within a period of time shorter than that required to repair the fault in
question; however, they do not guarantee that work in progress at the time the fault occurred
will be preserved. Continuing with our illustration of the PC user who just lost power: if
that user had a gasoline-powered generator left over from his Y2K preparations, he could
plug his PC into the generator and continue working after rebooting the PC. Unfortunately,
all of his work since the last save (manual or automatic) would have been lost.
For those systems that do provide fault-tolerance, the most common approach is to tolerate a
certain class of faults. Faults that are of a different nature than those expected will cause
the system to fail. Our hypothetical PC user could have addressed his power problem by
having installed an Uninterruptible Power Supply (UPS): this special device would
automatically switch over to battery power when the main power failed and the PC would
not have seen the loss in power. However, failures caused by the PC’s reset button being
pressed or the power cord being unplugged from the UPS are both examples of failure modes
not handled by the UPS solution and would thus result in the system losing work in progress
and halting.
The ability to handle arbitrary (including malicious) faults is termed Byzantine-fault-
tolerance. The name arises from a famous paper, "The Byzantine Generals Problem" (see
ACM Transactions on Programming Languages and Systems, 4(3), 1982. ACM Digital
Library subscribers can obtain the full text online). The problem faced by the hypothetical
Byzantine generals was how to successfully coordinate an attack on a city by sending
messages to the various army encampments encircling the city under siege. The problem is
straightforward if every general was loyal to the crown, but a disloyal general would have
the ability to forge new orders, lie in his responses to his superiors, and alter any messages
that passed through his hands on their way to a colleague. Cast back into the field of
computer science, Byzantine-fault-tolerant systems tolerate faults that may have been
caused due to malicious outside interference. Instead of assuming only safe failure modes
(e.g., the power fails and the machine quits functioning cleanly), Byzantine-fault-tolerant
systems also deal with failures where memory is corrupted or a CPU is computing incorrect
results. They also address faults caused by a hostile intruder that has taken over a machine
and is attempting to force the system to take certain actions.
Until recently, solutions to this problem have remained of only theoretical interest due to the
impracticality of their implementation. FARGOS Development, however, inspired by recent
theoretical work by Miguel Castro and Barbara Liskov, has implemented a practical system.

http://www.acm.org/pubs/articles/journals/toplas/1982-4-3/p382-lamport/p382-lamport.pdf

2

The core implementation of this technology is known as FARGOS/SolidState, a reference to
the fact that it provides for the reliable maintenance of state.

FARGOS/VISTA
The FARGOS/SolidState technology is implemented on top of FARGOS/VISTA, which is a
high-performance, transparently distributed, multithreaded, architecture-neutral, object-
oriented environment that runs on a variety of hardware and operating system platforms.
FARGOS/VISTA-based applications are normally written in Object Implementation
Language 2 (OIL2), but they can also be implemented other languages, such as C++.
Historical results with the predecessor language OIL showed a 6 to 10-fold improvement in
programmer productivity vs. C++ and the bulk of the examples in this document are
authored in OIL2 due to its conciseness.
While the FARGOS/SolidState technology can be used by application programmers to build
their own Byzantine-fault-tolerant FARGOS/VISTA-based applications, a set of classes
already implemented provides such support for the FARGOS/VISTA HTTP server. This
document first describes Byzantine fault-tolerance and then how web-based applications can
be implemented and deployed using the integration of FARGOS/SolidState and the
FARGOS/VISTA HTTP server.

2. Redundant Servers vs. Faults Tolerated
As noted previously, to tolerate a failure, a certain level of redundancy is required. A
significant question is "how many machines are required to tolerate a given number of
simultaneous faults"? This turns out to be very easy to express as a simple equation:

NumberOfMachinesNeeded = 3 * NumberOfFaults + 1
Thus to tolerate 1 fault, 4 machines are required; to tolerate 2 faults, 7 machines are needed.
While it obviously depends on the particular situation and the reliability needed, it is
expected that most deployments of a FARGOS/SolidState-based application will use clusters
of 4 machines.

3. Designing Byzantine-Fault-Tolerant Applications
Designing an application that is intended to survive a variety of possible fault scenarios,
such as power and network failures, damaged memory, failing disk drives or CPUs or even
hostile hackers, requires a design slightly different from a conventional application that
makes no provision for tolerating a fault. While the FARGOS/SolidState technology hides
almost all of the complexity involved in providing Byzantine fault-tolerance, the application
designer still needs to consider a few items.
One significant difference is that the application will be running on more than one machine.
A design that presupposes that all data items are entered into a master database will stop
dead when the machine that hosts the database dies. The goal of deploying technology such
as FARGOS/SolidState is to remove single points of failure—having the application services
it controls depend on a single machine or service would defeat the purpose.
Obviously, certain actions can only be done once and most organizations have a logically- or
physically-centralized database. For example, the picking list for an order should be printed
once on the warehouse floor, not four times. Likewise, a customer wants their credit card
charged only once, not four times. What this means is that to complete certain types of
actions, it may be required that the machines and services that represent single points of
failure be operational. If they are not, then the action does not happen. The goal for the web-
based application designer is to keep failures in the infrastructure from impacting the end-

3

user. If, for example, the printer server that prints picking lists on the warehouse floor is
down, then customer should still be able to enter his order and go about his business, even
though the picking list corresponding to his order will not be printed until the printer server
is repaired. Note that this is not an example of tolerating a fault—as long as the printer
server remains down, the picking lists will not be printed. The point is that the occurrence of
this single-point-of-failure fault was not in an application upon which the end user was
dependent in a time-critical fashion. A subsequent section in this document provides some
suggestions as to how to structure applications and databases to eliminate many time-
sensitive single points-of-failure.
The other issue specific to Byzantine-fault-tolerant applications is that each transaction is
executed on all of the servers and the results of the transaction are verified for correctness.
The operation performed must always produce the same result for a given set of inputs,
which are comprised of the current stored state and any arguments provided to the
operation. This means that results based upon random numbers, the current time, local
server name, etc. are all unsuitable for a Byzantine-fault-tolerant transaction because the
result will not be identical across all servers.

4. The FARGOS/SolidState HTTP Server Adapter
FARGOS/SolidState can be used to implement Byzantine fault-tolerant transactions in a
wide variety of scenarios, many of which would not doubt be surprising to the developers of
the technology. Almost any of these applications will deploy client-side components that are
aware that they are interfacing with a FARGOS/SolidState-based infrastructure. While
challenging, it is possible to create FARGOS/SolidState-based services that are accessed by
clients that are completely unaware of the FARGOS/SolidState infrastructure.
Arguably, the World Wide Web is most widely deployed client/server application that does
not permit the server-based components the luxury of dictating the characteristics of the
clients that interact with it. Although the vast majority of web-based transactions are read-
only (e.g., send an HTML file or GIF image), the small subset dealing with the collection of
information provided by the end-user (e.g., e-commerce, forums, comment forms, etc.) is very
important. As a rule of thumb, a web site operator never wants to lose information that a
customer has taken the time to enter. As a user invests more time at a site, the probability
of a failure occurring during her visit continues to increase. If that user was adding items to
her shopping cart, the loss of an hour's worth of selections is going to be more significant
than that of 2 minutes worth. Thus, the ironic correlation that, as the customer's investment
in time and items selected increases, the probability of a failure losing all of customer's work
also increases.
A set of classes was developed to integrate the FARGOS/VISTA HTTP server with the
FARGOS/SolidState infrastructure so as to enable conventional web browsers to obtain the
reliability of Byzantine fault-tolerant transactions. The deployment model assumed is
graphically illustrated in Figure 1. The end user is permitted to use a very rudimentary
browser: no ability to control the user’s browser is assumed other than support for HTML
forms and that the browser responds to an HTTP 302 (Moved Temporarily) indication, which
requests the browser to load a different page. Technically, the desired HTTP return code
should be 303 (See Other); however, in practice this is not handled properly by many web
browsers. As a workaround, the HTTP 302 (Moved Temporarily/Found) return code is used
instead. Careful readers will discover that this problem is also noted in section 10.3.4 of RFC
2616. These limited functional requirements means support for JavaScript or Java applets
is not needed by the FARGOS/SolidState interfaces. Of course, the web site designer might
exploit such facilities: the very limited set of required functionality does not prohibit the
utilization of advanced browser capabilities..

http://www.ietf.org/rfc/rfc2616.txt
http://www.ietf.org/rfc/rfc2616.txt

4

Figure 1
Because programmatic logic is not assumed to exist on the web browser client, the detection
and initiation of recovery from a failed server will normally be the responsibility of the user:
they will have to press for a second time the “Submit” button within the web page's form. If
the use of client-side programmatic logic is possible, the user’s browser can execute an auto-
recovery procedure locally; however, these capabilities will be found in a much smaller
browser population. In addition, the typical human response will be to press the button
again, which would interfere with a running applet.
A set of servers, typically four in number, act as the server pool for transactions that are to
be fault-tolerant. Sites provisioned with a large number of servers for scaling purposes
should use the majority of them in a read-only fashion (e.g., serving up images, HTML
documents). The pool of fault-tolerant servers should be used for transactions that maintain
state on behalf of the user (e.g., noting the insertion of a particular item into a shopping
cart). Alternatively, the server farm can be broken up into orthogonal server pools of 4
servers each.
The logical web site must be front-ended by a load-distribution product to prevent a remote
client's web browser from being pinned against a failed server. For testing purposes, the
ForwardConnection class implements a suitable front-end, but it is not a high-
performance solution because it must forward responses from the HTTP servers back to the
web browser clients. There are several varieties of high-performance load-balancing front
ends on the commercial market and any given offering should be suitable. Most commercial
products modify the incoming packet stream and normally avoid being involved in the
outgoing data stream, which for a web or FTP site is by far the dominant direction of traffic
flow. Note, however, that it would be wise to choose a product that provides support for high-

5

availability; otherwise the load-distribution product itself becomes a single point of failure
for the entire site1.

FARGOS/SolidState Performance Characteristics
By default, FARGOS/SolidState returns results to client applications as soon as the
correctness of a given result can be asserted. One benefit is that the speed of transaction
processing is not limited by that of the slowest server in the pool. This issue is discussed in
more detail later in this document (see Performance vs. Lock-step Synchronization). An even
more significant benefit of this default behavior is that when a failure does occur, there is a
high probability that no delay at all will be introduced while the system reorganizes itself to
compensate for the detected fault. For the most common configuration of 4 servers, the
probability of encountering a delay due to the detection of a fault is 25%. When 7 servers are
in use, the probability of encountering a delay is less than 15% during the detection of the
first failure and less than 17% during the detection of the second simultaneous failure.
It is very important to realize that, if FARGOS/SolidState does detect a failure and
reconfigures itself, rather than operate in a degraded, albeit still correct, mode, applications
continue to operate at full speed. Thus, reconfiguration is a one-time event that occurs when
a fault is first detected and the probability of the reconfiguration introducing a delay that is
visible during this one time event is at most 25%!2 Performance issues in the presence of
failures are commented upon again elsewhere in this document (see Performance
Implications of a Failure).

5. Byzantine-Fault-Tolerant Sessions
Before Byzantine-fault-tolerant operations can be performed on behalf of a user, a session
needs to be created. The creation of a session causes a collection of objects to be created
within the FARGOS/VISTA environment: these objects will be dedicated to handling
Byzantine-fault-tolerant transactions for the user until the session is complete.
The facilities provided by the FARGOS/SolidState HTTP server adapter are intended to be
useful for a variety of web-based applications. Consequently, some items of information are
passed as arguments when a session is created. These arguments indicate the type of
transaction session and the first page to display. The type of the transaction session
determines what sort of actions can be performed: an application that implements a
shopping cart for an online store would be expected to have different functionality than one
that implemented an online brokerage.
The creation of a session and specification of these parameters occurs as a result of an HTTP
GET operation. This means that the appropriate request would normally be embedded in an
HTML document3. An example HTML anchor appears below:

1 Sites interested in fault-tolerant transmission of bulk data from the web site to clients (e.g.,
video streams, downloads of program executables) can consider the
FARGOS/SolidConnection offering, which also provides such load-distribution facilities.
2 These performance characteristics are so incredible that they deserve an explanation point.
3 Clearly, specialized clients that make HTTP requests can be written; however, the focus of
this discussion is on the development of applications that only assume the use of a
conventional web browser and do not require the installation of additional software on the
client machine.

6

As can be seen, the specification is not very complex. Much of the work of implementing
Byzantine-fault-tolerant transactions takes place in HTML pages and does not require any
programming.
There are two parameters passed as part of the anchor prototype illustrated above. The first
is the page parameter. Its value indicates the source of the initial page to be displayed after
the transaction is created and is typically the file name of an HTML source file. The other
parameter, type, indicates the type of transaction to be created. For security purposes, the
name of the class that implements a particular transaction type is not used directly.
Otherwise, objects of arbitrary classes could be created by hostile third parties using a
suitably constructed HTTP GET command4. Instead, a class that implements support for
web-based transactions is assigned a logical name, which could be exactly the same as the
name of the implementation class, and registered with the transaction service. The logical
name is used as the value of the type parameter. Below is a sample used in a web-based
calculator:

6. Implementation of Byzantine-Fault-Tolerant Transactions
As noted above, one of the parameters specified when a new Byzantine-fault-tolerate session
is created is the type of the transaction. A given transaction type corresponds to a
FARGOS/VISTA-based class that implements the logic for a particular Byzantine-fault-
tolerant state variable. Typically, this is where operations like adding an item to a shopping
cart are implemented. In general terms, the state variable is passed a variety of parameters
that were embedded in an HTML page. These would indicate, for example, what operation is
to be performed and any additional information (like a product ID, desired quantity, etc.).
The state variable has to perform its work and then it returns a value. To ensure
correctness, the Byzantine-fault-tolerant replica controller checks this value for validity
against all of the values returned by the other servers.
Although running under the control of FARGOS/SolidState, HTTP-based applications still
must integrate with the HTTP server. Programmer's should be aware of facilities provided
by the standard FARGOS/VISTA Object Management Environment and they will find that
the FARGOS/VISTA HTTP Server Programmer's Guide devotes itself to the topic.

Registering Session Types
The value provided for the type parameter is mapped to the actual name of an
implementation class that has previously been registered. This registration can be
performed creating RegisterReplicaHTTPclass objects. For example, in an rc file for the
FARGOS/VISTA Object Management Environment daemon:
 RegisterReplicaHTTPclass calculator WebCalculator

Multiple RegisterReplicaHTTPclass objects can be created to declare a suite of classes
that implement state variables that provide support for various transaction types.

Application-Specific State Variables
The FARGOS/SolidState HTTP adapter package provides a convenience class,
HTTPreplicaStateVariable, from which new classes can inherit. This class provides
several useful utility methods that make it convenient to dynamically prepare and register

4 Sadly, this kind of mistake is made all too often by developer who assume that their
specially constructed URLs are too complicated for anyone to decipher.

7

new web pages that are the result of a particular transaction. While it is not mandatory5, it
is strongly recommended that developers inherit from this base class.
The key method that all FARGOS/SolidState-based state variable objects must implement is
processRequest. Its prototype is illustrated below:
ClassName:processRequest(int transactionID, int clientTransID, array requestData,
assoc options, array uriInfo, array formParams, assoc substitutionList)
{
 // compute result
 return (result);
}

The transactionID parameter is a value assigned by the underlying replica controller. It
uniquely identifies the transaction. The transactionId can be used by the transaction logic
whenever a unique value is needed that will be shared between the replicas. Note that many
normal mechanisms for generating unique identifiers (such as thread object ID) will generate
a unique value at each instance of the state variable that is distributed amongst the
cooperating members of the server pool and thus be useless for the purposes of a Byzantine
fault-tolerant transaction.
The clientTransID is a (hopefully) unique identifier assigned by the client that identifies the
request it made. Because the FARGOS/SolidState logic caches results, the proper use of
client transaction Ids allows a repeated (duplicate) transaction request to be satisfied by
returning a previously cached result. In practice, this is a mandatory requirement for
applications that use the FARGOS/SolidState facilities directly. Note that since the results
returned by applications that use the HTTP adapter are actually web pages, the
FARGOS/VISTA HTTP server caches the dynamically generated web page (see descriptions
of the classes HTTPdaemon and URLdirectory). Thus, a repeated request (via an HTTP
GET or POST) will be handled by the HTTP server sending back the cached page (see
HTTPcachedObject) instead of attempting to reissue the transaction via the
FARGOS/SolidState HTTP adapter.
The array requestData is a parse of the HTTP request line (e.g., a GET or POST) that
initiated the transaction. The first subscript (0) is the command; the second is the Uniform
Resource Identifier (URI, see RFC 2396 for the format) requested and the third is the HTTP
version. Most transaction logic will only be concerned with the URI. It can be conveniently
parsed using the parseHTTPuriData() function provided by the FARGOS/VISTA Object
Management Environment core.
The options parameter is an associative array whose subscripts are the names of options that
were provided in the HTTP request header. Each name has been converted to lowercase and
includes the trailing colon.
The URI specified as requestData[1] is already parsed into its component elements and made
available as the array uriInfo. The first element, subscript 0, is the scheme in use (typically
http). The second element is the host and the third is the file that is being requested. The
fourth element (subscript 3) contains the options specified (items after a “?”). Any
positioning indicators (following a “#”) are placed as the fifth and final element of the array.
Data that was provided in the body of a POST request is provided as the parameter
formParams. This is an array of associative arrays. Each element of the array corresponds
to one item of POST data and maintains the order in which the data was provided. The
associative array that is found in each subscript of the array contains a single element, which

5 It is not mandatory because FARGOS/VISTA supports allomorphism in addition to
polymorphism. It is sufficient for a class to implement the interesting methods found in a
base class—it does not have to inherit it.

http://www.ietf.org/rfc/rfc2396.txt

8

is subscripted by the name of the field. The corresponding value is a string holding the text
that was provided as the field’s value.
The last argument is an associative array of substitution variables. Each key of the
associative array substitutionList corresponds to a string pattern that will be used in a global
search-and-replace operation against an HTML source file. The value of each element
indicates the text that will be substitute wherever the key’s pattern was found. Several
variables are predefined and will always be present:
• TRANSACTION
• PROTOCOL
• FULL_TRANS_PATH
Other variables may be present as well.

Returning Results
While the underlying FARGOS/SolidState replica controller can handle a value of any kind,
the adapter classes that integrate this facility with the FARGOS/VISTA HTTP server impose
some structure. The adapter code mandates that the result be returned as an array that has
at least two elements. The first element of the array is the transaction ID associated with
the transaction. The second is the name of the prepared page to which the user’s web
browser should now be directed. It is not required, but the computed value should be
provided as the third element of the result array. This enables the Byzantine-fault-tolerant
replica controllers to verify the correctness of the result. A complete sample appears below:
 result[0] = transactionID;
 result[1] = resultPageName;
 result[2] = computedValue;

Typically, the contents of the result page will need to be dynamically generated based upon
the results of the computation. In such cases, the new result page should be prepared and
registered with the web server before the state variable returns its result. The
HTTPreplicaStateVariable class provides a loadAndRegister method that will load an
HTML file that acts as a template, perform a set of global search and replace operations
against the text based on the contents of a substitution list, and register the resulting
dynamically created text with the HTTP server. This method takes four arguments: the
page to be loaded as a template, the virtual site name, the name to be assigned to the
generated page and the substitution list. This is illustrated below:
 obj = call “loadAndRegister”(srcPage, options[”host:”], generatedName,
 substitutionList);

The Server Side Include processor is automatically utilized as needed (see class
HTTP_SSIprocessor).

7. Performance Issues
By default, FARGOS/SolidState-based applications are configured to return results to a
client as quickly as possible. Some applications may find it desirable to alter the default
parameters based on considerations discussed below.

Performance vs. Lock-step Synchronization
Each client that makes use of FARGOS/SolidState-based transaction facilities actually issues
requests via an object that is dedicated to the client. One of the responsibilities of this object
is to verify the correctness of the results obtained from the members of the server pool.
Recall that, unlike previous systems, FARGOS/SolidState provides Byzantine-fault-
tolerance, so just returning a result to the client is not sufficient—the result must be correct.

9

It is important, however, to realize that the actual implementation of this logic was done in
such a fashion as to return a result to the client as soon as the correctness of the result can
be asserted.
It may not be obvious to the reader, but this assertion can be made after receiving

ToleratedNumberOfFaults + 1
identical results from participating servers. Thus, if one failure is to be tolerated, 2 identical
results from the pool of 4 servers are all that is needed to assert the correctness of the result.
If two failures are to be tolerated, then 3 identical results are needed from the pool of 7
servers.
This bias towards quickly returning results means that at least half of the participating
servers may not have finished their independent computation of a result at the point in time
when a response is provided back to the requesting client. For conventional applications,
this is not an issue; however, the use of load-distributing front-ends to web sites creates a
potential problem: the next request for a web page that is made by a browser client may be
sent to one of the servers that has not finished computing its result.
In practice, this will probably not be an issue due to the tendency for server pools to be
comprised of identically configured machines, thus providing similar performance
characteristics. Also, the latency involved in sending a response across the Internet to the
browser client and subsequent reception of the client browser's next request provides an
additional window of time in which to allow the slower servers to finish computing their
results.
The probability of such an event occurring can be reduced (but not made impossible) by
increasing the verification limit from

ToleratedNumberOfFaults + 1
to

3 * ToleratedNumberOfFaults;
however, the overall response time of the system will be somewhat degraded6.

Performance Implications of a Failure
Many systems that are capable of tolerating a fault continue to produce correct results but
run in a degraded performance mode. FARGOS/SolidState-based applications do not suffer
from such performance degradations:

• The failure of any server other than the current primary replica controller has no
effect on performance.

• The failure of the current primary replica controller introduces a short delay. This
delay is caused by the need to detect the actual failure of the primary. Once the
failure is detected, the surviving servers recover and a new primary is selected.
From this point on, the system continues to run at full speed.

These performance characteristics mean that a FARGOS/SolidState-based application only
suffers a performance degradation if-and-only-if the failure affects the current primary
replica controller. The probability of this being the case is 1 out of the total number of
servers that are cooperating, thus for the common case of 4 servers the probability is ¼ or
25%.

6 The ReplicaClientProxy class provides a raiseWaitLimit method that can be used to
adjust how many responses are required from participating servers before an answer can be
returned to the client.

10

If the failure does affect the primary replica controller, a short delay is introduced while the
failure is detected and the servers reconfigure themselves. This delay is incurred only once.
From that point onwards, the system returns to operating with absolutely no degradation in
speed.

11

8. Calculator Example
This example illustrates a simple form-based calculator. The HTML pages that provide the
basis of the application are described first.

Creating a Session
The HTML page below creates a new Byzantine-fault-tolerant transaction session: The
initial page to be displayed will be “example2.html” and the type of the transaction is
specified as “calculator”.
 <!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 3.2 Final//EN”>
 <HTML>
 <HEAD>
 <TITLE>Create New Session</TITLE>
 </HEAD>
 <BODY>
 <p>Start transaction: click

 here

 </p>
 </BODY>
 </HTML>

Sending a Request
Input from a user is often obtained using an HTML FORM. The HTML file below
corresponds to the “example2.html” file referenced above. It provides a form into which a
user can enter values and a desired operation. Submission of the form will cause the data
provided by the user to be processed by the Byzantine-fault-tolerant state variable associated
with this user’s current session.
 <!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 3.2 Final//EN”>
 <HTML>
 <HEAD>
 <TITLE>Create New Session</TITLE>
 </HEAD>
 <BODY>
 <h1>Calculation Result</h1>
 <!$@RESULT>
 <p>
 <form name=”ComputeForm”
 action=”$@FULL_TRANS_PATH?page=example2.html&method=compute”
 method=”post”>
 <input type=”hidden” value=”$@TRANSACTION” name=”transactionID”>
 <p>Operand 1:<input type=”text” name=”operand1” size=”24”></p>
 <p><select name=”selectName” size=”1”>
 <option value=”add” selected>+
 <option value=”subtract”>-
 <option value=”multiply”>*
 <option value=”divide”>/
 </select></p>
 <p>Operand 2:<input type=”text” name=”operand2” size=”24”></p>
 <p><input type=”submit” name=”submitButtonName” value=”Compute”>
 <input type=”reset” value=”Reset Default”>
 </form>
 </p>
 </BODY>
 </HTML>

Note the use of the <!$@RESULT> comment above. Untouched, this remains a comment in
an HTML source file and is not visible to the user when the web browser displays the page.
If, however, the substitution list includes an item whose key is <!$@RESULT>, the comment

12

will be replaced with alternative text. The state variable's processRequest method can
thus replace the comment with arbitrary HTML text that will display the current result. A
"trick" such as this allows the same template page to be used for both the initial page (before
any transaction has been executed) and subsequent display of results. Some web site design
products use a convention of "<!--comment text-->", so the name of the substitution variable
may be forced to include the leading and trailing "--" characters.

Processing a Request
Every transaction requires an application-specific class that implements the appropriate
functions associated with the Byzantine-fault-tolerant state variable. The source code below
implements the calculator logic. The create and delete methods of the class are responsible
for registering and un-registering the name of the state variable with the local system.
While the code displayed below can be copied directly into another class, it may help to
understand its purpose.
When a Byzantine-fault-tolerant session is created, the appropriate state variables are
created on each of the servers participating in the fault-tolerant cluster by the
FARGOS/SolidState system. For each session, one state variable is created on each server.
Each of the state variables has a unique object identifier and the FARGOS/SolidState replica
controller code uses these object Ids to identify and address specific replicas of a state
variable. The additional logic that integrates the HTTP server to the facilities provided by
FARGOS/SolidState also creates on each server copies of an object that acts as a proxy for
the user's browser. It does this so that any server that receives a request to process a
transaction will have a locally resident proxy for the client. Again, these objects will have
their own unique object Ids, but each one registers with its local web server using the name
of the transaction session. Because the creation of these objects takes place as two distinct
steps, the client proxy does not know about the object Id of the local copy of its associated
Byzantine-fault-tolerant state variable. The solution is to take advantage of a
FARGOS/VISTA capability and assign a name to the object and use that name instead of an
object Id when addressing the state variable from the client's proxy object.
class Local . WebCalculator {
 string myOIDname;
 oid urlDirectory;
} inherits from HTTPreplicaStateVariable;

WebCalculator:create(string stateObjName)
{
 myOIDname = stateObjName;

 registerService(myOIDname, thisObject, 0);
}

WebCalculator:delete()
{
 unregisterService(myOIDname, thisObject);
}

The remaining method of the class does the actual work each time a request is received by
the web server.

13

// HAS TO BE IDEMPOTENT BASED ON ARGV

WebCalculator:processRequest(int transactionID, int clientTransID,
 array requestData,
 assoc options, array uriInfo,
 array formParams, assoc substitutionList)
{
 array result;
 string newPage;
 string page, host, method;
 assoc queryData, formData, subData;
 string query, selectName, fullName;
 any op1, op2, computeResult;
 any obj;

 query = uriInfo[3];
 queryData = parseHTTPformData(query, assoc);

 // do computations...
 formData = call "collapseForm"(formParams);
 if (indexExists(formData, "method") != 0) {
 method = formData["method"];
 }
 op1 = stringToNumber(formData["operand1"], any);
 op2 = stringToNumber(formData["operand2"], any);
 selectName = formData["selectName"];
 if (selectName == "add") {
 computeResult = op1 + op2;
 } else if (selectName == "subtract") {
 computeResult = op1 - op2;
 } else if (selectName == "multiply") {
 computeResult = op1 * op2;
 } else if (selectName == "divide") {
 if (op2 != 0) {
 computeResult = op1 / op2;
 } else {
 computeResult = 0;
 }
 }

 subData = substitutionList;
 subData["<!$@RESULT>"] = makeAsString("<P>Last result=",
 computeResult, ".</P>");

 // Return page
 newPage = queryData["page"];
 fullName = makeAsString(subData["$@TRANSACTION"], "?page=",
 newPage, "&id=", transactionID);
 obj = call "loadAndRegister"(newPage, options["host:"], fullName,
 subData);

 result[0] = clientTransID;
 result[1] = fullName;
 result]2] = computeResult;

 return (result);
}

14

9. Shopping Cart Example
Many web sites engaged in e-commerce with end-users use the abstraction of a shopping cart
to keep track of what items the user has selected for purchase. Browsing an web-based store
front's wares and putting together an order can involve the expenditure of significant
amounts of time on the part of a potential customer. The last thing a vendor wants is to
loose a customer due to a failure of the web site. The example provided here illustrates how
such a shopping cart can be implemented using FARGOS/SolidState and thus yield the fault-
tolerance currently missing from the web today.

Configuration of the VISTA daemon
Each of the servers in the processor pool will use an rc file similar to the following:
 PeerRegistry
 RegisterPoolMembership LocalDemoCluster
 HTTPdaemon profile tcp:0.0.0.0:1971
 RegisterReplicaHTTPclass shop WebShoppingCart
 CreateReplicaHTTPsession HTTPreplicaClientProxy LocalDemoCluster
 AcceptPeerConnections tcp:127.0.0.1:1981
 ConnectToPeer tcp:127.0.0.1:1982
 ConnectToPeer tcp:127.0.0.1:1983
 ConnectToPeer tcp:127.0.0.1:1984

The creation of a PeerRegistry object enables the distributed registry between VISTA
daemons. This is followed by the creation of a RegisterPoolMembership object. This will
register the server as being a member of the indicated pool. A server can participate in more
than one pool by having more than one RegisterPoolMembership object created with the
appropriate arguments. The name of the pool is administratively assigned and it was chosen
to be LocalDemoCluster for this illustration.
The creation of an HTTPdaemon allows HTTP requests to be processed. Note that the
traditional port 80 is not used in this example. It could have been, but using a non-standard
port drives home the point that a load balancing front-end will be used to distribute incoming
requests across the various servers.
Each type of Byzantine-fault-tolerant transaction is implemented using a support class. The
class for this example is registered by creating a RegisterReplicaHTTPclass object and
passing the two arguments that associated the public name for the transaction type that will
appear in HTML directives and the actual name of the implementation class. In this case,
the type name of "shop" was chosen and the logic is implemented within the class
WebShoppingCart. The final line specific to this example registers the
FARGOS/SolidState HTTP adapter with the web server and specifies that the
LocalDemoCluster pool of processors is to be used.
The remaining lines accept unsolicited connections from other FARGOS/VISTA peers and
actively establish connections to other members of the pool.

Creating a Session
At some point, the user's browser needs to perform an HTTP GET or POST on the URL that
causes a new session. That URL is:
 /transactions/createTransaction?page=nextPage.html&type=shop&method=init

The value of nextPage.html for the page parameter would be set to whatever is appropriate
for the site.

15

The type parameter's value is set to "shop", which corresponds to the name used as the first
argument to the RegisterReplicaHTTPclass. The method parameter is set to init and acts
as an explicit indication that the intent is that the session is being created as the result of
this request. This parameter can be examined by the state variable to provide it information
with respect to what is expected.
Most of the pages associated with the user's session will contain dynamically generated
content. As an illustration, the code below provides a table of available for purchase and lists
the contents of the user's shopping cart on the main page. The corresponding HTML used to
do this is shown below.
 <p>Click on an item below to learn more:</p>
 <p><!--$@ITEM_LIST--></p>
 <p>Your demonstration shopping cart currently contains:</p>
 <p><!--$@CART_CONTENTS_LIST--></p>

As can be seen, there are two variables used, bracketed by appropriate HTML content that
will always be constant.

Adding an Item to the Shopping Cart
When the user decides to purchase an item, they fill out a form with the desired quantity and
submit the request. An appropriately constructed HTML form will cause the appropriate
POST request to be sent to the HTTP daemon. The HTML form that corresponds to the
WebShoppingCart class appears below:
 <p>Picture:</p>
 <p><!--$@ITEM_DETAIL_PICT--></p>
 <p>Description:</p>
 <p><!--$@ITEM_DETAIL_DESC--></p>
 <p>Price:</p>
 <p><!--$@ITEM_DETAIL_PRICE--></p>
 <p>To purchase, enter the desired number of items below:</p>
 <p>

<form name="FormName" action="$@FULL_TRANS_PATH?page=page1.html&method=addToCart"
 method="POST">

 <input type="hidden" value="$@ITEM_DETAIL_SKU" name="SKU">
 <label>Desired Quantity:</label>
 <input type="text" name="qty" size="3" maxlength="6"></p>
 <p><input type="submit" value="Modify Cart" name="submitButtonName">
 </form>

Processing Transactions
Every action taken by a user that causes a change in the state of their shopping cart must be
processed by the set of Byzantine-fault-tolerant state variables associated with the user's
session. This illustration makes use of the ReadCSVfile class, which reads comma- (or tab-)
separated values from a text file and provides a level of relational-database like query
functionality. The ReadCSVfile class assigns column names based on the contents of the
first line of the file. A sample file appears below:
 SKU,Description,Price,Image
 dress,A dress,79,dress.jpg
 shoes,Shoes to wear,59,shoes.jpg
 tackle,Box to tackle,159,tackleBox.jpg
 figs,Tacky figurines,19,figurines.jpg
 abacus,Fault-tolerant abacus,9,abacus.jpg
 booth,Presentation Booth,259,booth.jpg
 radios,Walkie-Talkies,139,radios.jpg
 watches,Go-Blue watches,45,watches.jpg
 house,Two bedroom house,99,house.jpg

The create method of the WebShoppingCart class registers the object as a service whose
name was passed as an argument. Any support class utilized by the

16

HTTPreplicaStateVariable class must perform the same operation. The delete method
does the inverse by un-registering the service when the object is deleted.
global {
 const string DB_FILE = "../catData.csv";
};

class Local . WebShoppingCart {
 string myOIDname;
 oid urlDirectory;
 assoc purchasedItems;
 oid dbObj;
} inherits from HTTPreplicaStateVariable;

WebShoppingCart:create(string stateObjName)
{
 assoc acl;

 myOIDname = stateObjName;
 acl = makeDefaultACL();
 dbObj = send "createObject"("ReadCSVfile", acl, DB_FILE)
 to ObjectCreator;

 registerService(myOIDname, thisObject, 0);
 display("Created WebShoppingCart, ", stateObjName, "\n");
}

WebShoppingCart:delete()
{
 unregisterService(myOIDname, thisObject);
}

The processRequest method is invoked whenever any modification of the Byzantine-fault-
tolerant state variable is performed. This includes the first-time initialization when a new
session is created and thus provides an opportunity to redirect the browser to an initial page
affiliated with the user's new session.
The first step is to obtain information about the requested transaction. There are two
sources for this: the URI passed by the browser and any additional, albeit optional, form-
related data that might be present in a POST request. The URI is conveniently pre-parsed
and the various options can be extracted as subscript 3 of the uriInfo argument. The
parseHTTPformData() function conveniently parses this and can return an associative
array that holds the arguments that were provided. The elements of the uriInfo array are:

Subscript Value

0 Scheme (usually, "http")
1 The host name/address

2 The referenced page
3 Arguments after a "?"

4 Parameter arguments after a "#"

Form-related data is passed as an array of associative elements, which preserves the
sequential order in which items were sent. Most form fields are uniquely identified, so often
order is not necessary and it is more convenient to access individual fields by their names.
The collapseForm method of the HTTPreplicaStateVariable class is used to convert the
form parameters into a single associative array.

17

WebShoppingCart:processRequest(int transactionID, int clientTransID,
 array requestData,
 assoc options, array uriInfo,
 array formParams, assoc substitutionList)
{
 array result, headings, prodList;
 string newPage;
 string page, host, method;
 assoc queryData, formData, subData, selectList;
 string query, selectName, fullName, key;
 string detailPage, sku;
 any op1, op2, computeResult;
 any obj;
 int nextID, qty;

 display("WebShoppingCart:processRequest transID=", transactionID,
 " clientTransID=", clientTransID, " argc=", argc, "\n");
 display(argv);

 nextID = clientTransID + 1;

 query = uriInfo[3];
 queryData = parseHTTPformData(query, assoc);
 if (indexExists(queryData, "id") != 0) {
 nextID = stringToNumber(queryData["id"], int);
 }

 // do computations...
 formData = call "collapseForm"(formParams);
 if (indexExists(queryData, "method") != 0) {
 method = queryData["method"];
 }
 subData = substitutionList;

The operation to be performed is determined based on the value of a method parameter
specified as part of the URI. A sequence of if-statements is used to take the needed action.
Two values are of interest: "addToCart", which is used to add an item to the user's shopping
cart and "detail", which is used to lookup information regarding a particular item and make
this information available in substitution variables.

18

 if (method == "addToCart") {
 sku = formData["SKU"]; // hidden field...
 qty = stringToNumber(formData["qty"], int);
 if (qty == 0) { // remove...
 deleteIndex(purchasedItems, sku);
 } else {
 purchasedItems[sku] = formData["qty"];
 }
 }

 if (method == "detail") {
 key = "$@ITEM_DETAIL_SKU";
 sku = queryData["SKU"];
 subData[key] = sku;

 selectList["SKU"] = sku;
 prodList = send "selectRecords"(selectList) to dbObj;

 key = "<!--$@ITEM_DETAIL_PICT-->";
 subData[key] = makeAsString("<IMG src=\"/images/",
 prodList[0]["Image"], "\">");
 key = "<!--$@ITEM_DETAIL_DESC-->";
 subData[key] = prodList[0]["Description"];
 key = "<!--$@ITEM_DETAIL_PRICE-->";
 subData[key] = prodList[0]["Price"];
 } else { // init or addToCart
 // <!--$@ITEM_LIST-->
 selectList["SKU"] = "*";
 prodList = send "selectRecords"(selectList) to dbObj;
 key = "<!--$@ITEM_LIST-->";
 headings[0] = "SKU";
 headings[1] = "Description";

 detailPage = makeAsString(substitutionList["$@FULL_TRANS_PATH"],
 "?page=detail.html&method=detail");
 subData[key] = call "formatTable"(headings, prodList, "SKU",
 detailPage);

 // <!--$@CART_CONTENTS_LIST-->
 key = "<!--$@CART_CONTENTS_LIST-->";
 subData[key] = call "formatPurchasedTable"();
 }

Once the transaction has been processed, a new result page needs to be generated. The page
is extracted from the page parameter specified as part of the request's URI. Because the
same template page is often used as the basis for displaying different content, the new page
is qualified with the ID of the transaction, thus generating a unique name. The
loadAndRegister method of the base class HTTPreplicaStateVariable is used to read the
template page, perform the global search and replace for the substitution variables and
register the resulting page with the HTTP daemon. The name of the new page and the
current contents of the shopping cart are returned as the result of the transaction. Since
nothing outside of this support class (WebShoppingCart) actually understands the
meaning of this data, it might seem unproductive to return this information. The actual
reason for returning it lies in the nature of the fault-tolerance being provided by
FARGOS/SolidState. Because FARGOS/SolidState enables Byzantine-fault-tolerant
transactions, correctness of obtained results is also checked. Returning the contents of a
shopping cart allows it to be verified and a faulty server that either added or dropped an item
from the shopping cart would be detected and tolerated.

19

 // Return page
 newPage = queryData["page"];
 fullName = makeAsString(subData["$@TRANSACTION"], "?page=",
 newPage, "&id=", nextID);
 obj = call "loadAndRegister"(newPage, options["host:"], fullName,
 subData);

 result[0] = clientTransID;
 result[1] = fullName;
 result[2] = purchasedItems;
display("WebShop:processRequest returns ", result);

 return (result);
}

The example provided above made use of two additional methods. For completeness, these
two methods, which were used to format table data, are presented below. They do not
directly deal with the interface to the FARGOS/SolidState HTTP adapter, so they can be
skipped by the reader who is uninterested in such low-level programming details.

20

WebShoppingCart:formatTable(array headings, array list, string anchorKeyField,
 string detailPage)
{
 string result, heading, row, body, elem;
 string val;
 any colName;
 int i, j;

 if (elementCount(list) == 0) return ("");

 heading = "<TABLE><TR>\r\n";
 for(i=0;indexExists(headings, i) != 0; i+=1) {
 elem = makeAsString("\t<TD>", headings[i], "</TD>\r\n");
 heading += elem;
 }
 heading += "</TR>\r\n"; // end of heading row...
 body = "";
 if (typeOf(list) == array) j = 0;
 else j = nextIndex(list, 0);
 do {
 row = "<TR>\r\n";
 for(i=0;indexExists(headings, i) != 0; i+=1) {
 colName = headings[i];
 val = list[j][colName];
 if (findSubstring(val, ".jpg") != -1) {
 val = makeAsString("<IMG src=\"/images/",
 val, "\">");
 }

 elem = makeAsString("<TD><A href=\"", detailPage, "&",
 anchorKeyField, "=", list[j][anchorKeyField],
 "\">\r\n", val, "</TD>\r\n");
 row += elem;
 }
 body += makeAsString(row, "</TR>\r\n");
 j = nextIndex(list, j);
 } while (j != 0);

 result = makeAsString(heading, body, "</TABLE>\r\n");
 return(result);
}

WebShoppingCart:formatPurchasedTable()
{
 int i;
 string sku, result, row;

 i = nextIndex(purchasedItems, 0);
 if (i == 0) { // empty table
 return ("<P><I>Your shopping cart is currently empty.</I></P>");
 }
 result = "<TABLE>";
 do {
 sku = getKeyForIndex(purchasedItems, i);
 row = makeAsString("<TR><TD>", sku, "</TD><TD>",
 purchasedItems[sku], "</TD></TR>\r\n");
 result += row;
 i = nextIndex(purchasedItems, i);

 } while (i != 0);
 result += "</TABLE>\r\n";
 return (result);
}

	Notice of Rights
	Trademarks
	Abbreviations
	Notice of Liability
	An Overview of FARGOS/SolidState
	
	Fault-Tolerant Systems
	FARGOS/VISTA

	Redundant Servers vs. Faults Tolerated
	Designing Byzantine-Fault-Tolerant Applications
	The FARGOS/SolidState HTTP Server Adapter
	FARGOS/SolidState Performance Characteristics

	Byzantine-Fault-Tolerant Sessions
	Implementation of Byzantine-Fault-Tolerant Transactions
	
	Registering Session Types
	Application-Specific State Variables
	Returning Results

	Performance Issues
	Performance vs. Lock-step Synchronization
	Performance Implications of a Failure

	Calculator Example
	
	Creating a Session
	Sending a Request
	Processing a Request

	S
	Shopping Cart Example
	
	Configuration of the VISTA daemon
	Creating a Session
	Adding an Item to the Shopping Cart
	Processing Transactions

