
Version: 4/12/2002 9:49 PM

FFAARRGGOOSS//VVIISSTTAA
Examples

ii

FARGOS/VISTA Examples
FARGOS Development, LLC
757 Delano Road
Yorktown Heights, NY 10598
http://www.fargos.net
mailto:support@fargos.net

Copyright 2001 - 2002 FARGOS Development, LLC

NNoottiiccee ooff RRiigghhttss
All rights reserved. This document may be rendered into whatever form is useful for
the user, including electronic transmission or printing, so long as the content is not
altered.

TTrraaddeemmaarrkkss
FARGOS/VISTA, FARGOS/SolidState and FARGOS/SolidConnection are trademarks of
FARGOS Development, LLC.

AAbbbbrreevviiaattiioonnss
FARGOS Development, LLC is a Limited Liability Company registered with the State
of New York. It is required to identify itself as such in its name, hence the “, LLC”
suffix. For purposes of readability in this document, the “, LLC” suffix is sometimes
dropped. The phrase “FARGOS Development” always denotes “FARGOS
Development, LLC” and is not intended to suggest any alternate form of
organization.

NNoottiiccee ooff LLiiaabbiilliittyy
Information in this document is distributed on an “As Is” basis, without warranty.
While every precaution has been taken in the preparation of this document, FARGOS
Development, LLC shall not have any liability to any person or entity with respect to
any loss or damage caused or alleged to be caused directly or indirectly by the
instructions contained within this document or by the computer software or hardware
products described in it.

http://www.fargos.net/
mailto:support@fargos.net

iii

Contents
1. Programming FARGOS/VISTA-based Applications...4

FARGOS/VISTA Software Development Kit..4
Getting Started ...5
Creating an Object...6
Doing Several Things at Once ...7
Well-Known Services ...7
Debugging using a Web Browser ...8
Timers ...8
Input Buffers and Asynchronous Input/Output ..8
Applications with Meta-Objects..23
HTTP Server Integration...25
Remote Object Creation ...30
Persistent Objects ...36
Byzantine Fault-Tolerant Transactions..41

4

1. Programming FARGOS/VISTA-based Applications
FARGOS/VISTA is the name given to a suite of technologies that enable the
development of architecture-neutral, transparently distributed applications. While
FARGOS/VISTA itself is a young technology, it is benefactor of a decade worth of
research, development and implementation experience in the following areas:

• Transparently-distributed, peer-to-peer applications
• Active objects
• High-performance multi-threading
• Architecture-neutral applications
• Persistent objects
• Fault-tolerance
• Non-stop operation with updates applied to running systems
• Reusable components
• Loosely-coordinated development efforts
• Self-describing environments
• Reflection
• Rapid development
• Code maintenance

Despite the plethora of programming technologies available today, there are a few
reasons why FARGOS/VISTA should be in the repertoire of any programmer:

• It is easy to learn: much of its power comes from the deceptively simple
object model.

• It is productive: while every development effort is unique, 6-to-10-fold
improvements in productivity were the norm with the predecessor technology.

• A FARGOS/VISTA-based application runs on any supported platform: if you
develop under Sun Solaris, your FARGOS/VISTA application runs under
Microsoft Windows or Linux, OpenBSD, etc.

• It enables the development of sophisticated, fault-tolerant distributed
applications that would otherwise be prohibitively expensive to develop.

The examples that follow are intended to assist programmers who are experimenting
with FARGOS/VISTA as well as peak the interest of those who are learning of its
existence for the first time.

FARGOS/VISTA Software Development Kit
Almost all FARGOS/VISTA-affiliated applications run within the FARGOS/VISTA
Object Management Environment, which is sometimes abbreviated as OME. The
FARGOS/VISTA Object Management Environment can be thought of as a
transparently distributed object-oriented operating system. It runs on top of a
computer’s native operating system. For example, a Sun SPARC computer will
normally be running Sun's Solaris Operating Environment and many Intel Pentium-
based machines run some variant of Microsoft Windows. Reader’s familiar with IBM’s
VM operating system for mainframes can view the FARGOS/VISTA Object
Management Environment as a guest operating system. Details regarding the model
of operation and standard facilities are provided in the FARGOS/VISTA Object
Management Environment Programmer’s Guide.

Applications that run within the FARGOS/VISTA Object Management Environment are
implemented as objects that are instances of classes, which describe all of the
necessary application logic. These classes must be compiled from source code into
some form of object code. The source code language is selected by the application

5

programmer. The preferred choice for FARGOS/VISTA applications is Object
Implementation Language 2, but a language such as C++ is a viable alternative.

The choice of source language will impact the form of object code that can be
generated. If a language other than OIL2 is used, the application developer will be
restricted to using native object code. (e.g., Sun SPARC or Intel x86 instructions),
which is generated by a C++ compiler, such as Microsoft’s Visual C++ compiler (for
Microsoft Windows) or the GNU C++ compiler (available for all supported Unix
distributions). If OIL2 is used, then not only can native object code be generated
but also an architecture-neutral format (OIL2 ANF) as well as documentation. Native
object code can be statically linked into a custom executable or dynamically loaded
into a running FARGOS/VISTA Object Management Environment process (e.g., using
the LoadObjectFile class). Architecture-neutral code is always dynamically loaded
and the standard mechanism is to use the LoadOIL2File class.

Regardless of the choice of implementation language, developers must install the
FARGOS/VISTA Software Development Kit and configure their environment
appropriately. Instructions are provided in the FARGOS/VISTA Installation Guide.

Getting Started
Consider an example that will serve to verify that the FARGOS/VISTA Software
Development Kit has been properly installed. The following performs the classic
“hello world” example:

%include "OMEcore.o2h"

class HelloWorld {
} inherits from Object;

HelloWorld:create()
{
 display("hello world!\n");
}

HelloWorld:delete() {}

Compile:

oil2_parse –oil2 hello.oil

Using the following rc file:

LoadOIL2File "hello.o2o"
HelloWorld

Test by issuing:

vista hello.rc

Something very similar to the following should appear:

FARGOS/VISTA Object Management Environment
Copyright © 1999 – 2002 FARGOS Development, LLC. All rights reserved.
hello world!

Compared to the equivalent C/C++ program, the amount of effort involved is slightly
greater (5 extra text lines and an rc file):

• The application was implemented by a class, which is not mandated in C (or
C++), so the declaration of the HelloWorld class was required. Good
programming style required the implementation of the delete method, even
though the object was not deleted in the example.

6

• An rc file had to be prepared to load the object code of the class and create
the object of interest. With a conventional application, the executable would
have been invoked directly.

When the application at hand is slightly more involved, the cost of a conventional
approach quickly exceeds that of a FARGOS/VISTA-based application.

Creating an Object
Everything within a FARGOS/VISTA Object Management Environment is represented
as an object. Consequently, one of the more useful activities that an application can
perform is the creation of an object. Objects are created by sending an appropriate
message to the ObjectCreator object. The method most often used is
createObject. The createObject method takes at least two arguments:

• The name of the object’s class
• An Access Control List

An object is deleted by sending it a deleteYourself message.

AAcccceessss CCoonnttrrooll LLiissttss
Security is an integral part of the FARGOS/VISTA Object Management Environment.
The predecessor to FARGOS/VISTA1 was developed for and deployed into
environments that assumed a great deal of trust. Consequently, access was granted
on an all-or-nothing basis. In contrast, FARGOS/VISTA was designed to support a
wide variety of trust. Ultimately, security involves the denial of access to
unauthorized parties. In the FARGOS/VISTA object model, every object is protected
by at least one access control list that determines who is permitted to invoke
methods on that object. The granularity of access can be as fine as per-object/per-
user/per-method. In general, most applications create objects using a default access
control list that permits the creator of the object full access and denies access to all
others. These default access control lists are conveniently created using the
makeDefaultACL() function.

OObbjjeecctt IIddss
All objects are identified by and referred to using an object Id (oid). An object Id is
an opaque handle and is somewhat analogous to a pointer in conventional
programming environments. There are, however, significant differences. A
FARGOS/VISTA oid is globally unique, thus no two objects have the same oid.
Unlike many object-oriented systems, a FARGOS/VISTA object can be referenced
using more than one oid. Stated formally, a FARGOS/VISTA oid provides a many-
to-one mapping to a physical object.

Because all inter-object interactions are performed by sending messages and all
objects are referenced using object Ids, all inter-object activity takes places without
regard to physical location. It is this characteristic that forms the basis of the
transparently distributed nature of the FARGOS/VISTA infrastructure. It should be
noted, however, that anywhere an object Id can be used as the target of a method
invocation, it is possible to use the name of a well-known service.

The example below illustrates the creation of several objects and their deletion.

1 Distributed Reliable Architecture Governing Over Networks & Systems (DRAGONS).

7

%include “OMEcore.o2h”

class HelloWorld2 {
} inherits from Object;

HelloWorld2:create()
{
 int j;
 assoc acl;
 oid obj;

 for (j=1;j<argc;j+=1) {
 acl = makeDefaultACL();
 obj = send “createObject”(“HelloWorld2”, acl, argv[j])
 to ObjectCreator;
 }
 if (argc >= 1) {
 display(“obj=”, thisObject, “argv[0]=”, argv[0],”\n”);
 } else {
 display(“no arguments\n”);
 }
 send “deleteYourself” to thisObject;
}

HelloWorld2:delete() {}

Doing Several Things at Once
One of the novel characteristics of the FARGOS/VISTA Object Management
Environment is that every method invocation is handled by a separate thread of
execution. This is in stark contrast to a conventional programming environment,
which has a single thread of execution that performs the work of an entire
application. Applications running in a FARGOS/VISTA Object Management
Environment have separate threads of execution performing items of work that
roughly correspond to function calls in a conventional environment. Most of the
time, programmers can be oblivious to the fact that a separate thread of execution
performs every method invocation. It does, however, provide a powerful
environment that makes the creation of asynchronous, event-driven applications
trivial to implement. Likewise, the automatic exploitation of symmetric
multiprocessor (SMP) hardware can be done with no effort on the part of the
application writer.

Well-Known Services
Every object that is created inside a FARGOS/VISTA Object Management
Environment is assigned a globally unique object Id. Since a message cannot be
sent to an object unless its object Id is known, objects that provide well-known
services must make their existence known. This is done using the
registerLocalService() function provided by the FARGOS/VISTA Object
Management Environment core. An application can locate a service by using the
lookupLocalService() function. Alternatively, a message can just be sent to the
named service. Thus the following:

 oid obj;
 obj = lookupLocalService("HTTPlogger");
 send "reopen" to obj;

is equivalent to:

 send "reopen" to "HTTPlogger"

8

Well-known service names have additional uses that may not be immediately
obvious. Persistent objects can benefit from not having to alter their instance data
when restored into a new process image—although the object Id of a service will
have changed, its well-known name remains the same. An example of this usage is
provided by the Email Mailbox Storage example presented later in this document.
Replicated services should always make a service name the definitive means of
addressing the service: this permits requests to be handed off to any of the
duplicate providers rather than being pinned to a particular instance2.

A well-known service is un-registered using the unregisterService() function.

Debugging using a Web Browser
The standard FARGOS/VISTA Object Management Core includes an HTTP server and
an integrated object browser application. The use of the HTTP server is described in
some detail in the FARGOS/VISTA HTTP Server Programmer’s Guide.

An object browser session is implemented by the class HTTPobjectBrowser. The
actual display of an object’s contents is performed by the class HTTPdisplayObject,
objects of which are created as needed by the session’s HTTPobjectBrowser
object. Neither of these classes is normally used directly. Instead, a new browsing
session is created by the helper class HTTPcreateObjectBrowserSession. The
normal usage is demonstrated in the vista rc file below:

AcceptPeerConnections tcp:127.0.0.1:8765
HTTPcommonLogFormat
HTTPdaemon $VISTA_ROOT/config/localHTTP.profile tcp:0.0.0.0:4321
HTTPpurgeCache 50 localhost
HTTPcreateObjectBrowserSession localhost /debug/newBrowser

By browsing the URL http://localhost:4321/debug/newBrowser, developers will be
presented with a list of all well-known services. Clicking on a link will cause the
object’s contents to be displayed.

Timers
Occasionally, an application may want to perform tasks periodically. One terrible
way to achieve this would be to constantly monitor the current time until enough
time had passed. The wasteful consumption of CPU cycles makes such an approach
infeasible. The FARGOS/VISA Object Management Environment provides two
mechanisms for waiting until a certain amount of time has passed. The approach
most commonly used by application programmers is to create a TimerEvent object.
An application can create as many TimerEvent objects as needed. When a timer
goes off, the client object is sent a timerExpired message and passed any extra
data that was previously associated with the timer.

As an alternative, the sleepForSecond() call can be used to put the application’s
thread to sleep for the requested number of seconds. This approach is convenient
when the delay is required in the middle of a looping construct.

Input Buffers and Asynchronous Input/Output
The FARGOS/VISTA Object Management Environment provides access to almost all
input/output-related facilities using the class IOobject. Rather than provide distinct

2 A discussion of issues related to replication is provided in the paper "Byzantine
Fault-Tolerant HTTP Services using FARGOS/VISTA".

http://localhost:4321/debug/newBrowser

9

classes for file access, TCP connections, UDP ports, etc., an IOobject is able to deal
with a wide variety of devices that are distinguished using transport schemes. While
the total set of recognized transport schemes varies from platform to platform, the
standard schemes always include:

• “file:” for files accessible via the local file system
• “tcp:” for TCP connections using IP version 4 (same as “tcp4:”)
• “udp:” for UDP ports using IP version 4 (same as “udp4:”)

Other transport standard schemes recognized by many FARGOS/VISTA Object
Management Environments include:

• “unix:” for Unix file domain sockets
• “raw:” for raw IP version 4 sockets (same as “raw4:”)
• “tcp6:” for TCP connections using IP version 6
• “udp6:” for UDP ports using IP version 6
• “raw6:” for raw IP version 6 sockets
• “ipx:” for IPX ports
• “spx:” for SPX connections

The actual argument passed to the create method is structured like a Uniform
Resource Identifier, as specified in RFC 2396. The FARGOS/VISTA Object
Management Environment can be locally extended to support additional schemes by
using the C++ function OMEregisterIOscheme().

LLooaadd BBaallaanncciinngg FFrroonntt--EEnndd ffoorr TTCCPP--bbaasseedd SSeerrvviicceess
One of the very powerful features of the FARGOS/VISTA programming model is the
use of multiple threads of execution for every method invocation. Among other
things, this makes it trivial to handle asynchronous events, such as the arrival of
data.

The example source code provided below implements a load balancing front-end to
an arbitrary TCP-based service, such as an HTTP server. An ultimate high-
performance solution would utilize dedicated routers that modify the in-bound
packets; the application-level load balancing “solution” illustrated here is intended to
demonstrate the simplicity of the resulting application that is good enough for many
environments.

The code below is complete “as-is”. Note that it is able to deal with an arbitrary
number of servers and simultaneous clients and it will tolerate the failure of a server.

http://www.ietf.org/rfc/rfc2396.txt

10

class Local . ForwardConnection {
/*!
This is an experimental class that forwards TCP connections in a round-robin
fashion to to a pool of servers.
!*/
 array destAddrList;
 int destinationCount;
 int nextDestIndex;
 string listenAddress;
 oid listenObj;
} inherits from Object;

ForwardConnection:create(string listenAddr, string connAddr1, string connAddr2)
{
/*!
The create method takes a minimum of two arguments. The first argument
specifies the transport address at which a listen port should be created.
The second and all remaining arguments indicate transport addresses to which
new connections should be forwarded.
!*/
 assoc acl, connACL;
 int i;

 listenAddress = listenAddr;
 destinationCount = 0;
 for(i=1;i<argc;i+=1) {
 destAddrList[destinationCount] = argv[i];
 destinationCount += 1;
 }
 acl = makeDefaultACL();
 connACL = makeDefaultACL();
 listenObj = send "createObject"("AcceptConnection", acl,
 listenAddress, thisObject, connACL) to ObjectCreator;
}

ForwardConnection:delete()
{
 if (listenObj != nil) send "deleteYourself" to listenObj;
}

ForwardConnection:connectionAccepted(oid source)
{
 oid fwdObj;
 assoc acl;

 acl = makeDefaultACL();
display("connect via ", destAddrList[nextDestIndex], " index=",
nextDestIndex,"\n");
 fwdObj = send "createObject"("ConnectAndForward", acl, thisObject,
 source, destAddrList[nextDestIndex], 0) to ObjectCreator;
 nextDestIndex += 1;
 if (nextDestIndex >= destinationCount) nextDestIndex = 0;
}

11

ForwardConnection:failedConnection(string destAddr, oid src, int tries)
{
 string dest;
 assoc acl;
 oid fwdObj;

display("Connection attempt to ", destAddr, " failed.\n");
 if (tries >= destinationCount) {
display("Tried all servers, closing source\n");
 send "deleteYourself" to src;
 exit;
 }
 do {
 dest = destAddrList[nextDestIndex];
display("\tnext choice: ", destAddrList[nextDestIndex], " index=",
nextDestIndex,"\n");
 nextDestIndex += 1;
 if (nextDestIndex >= destinationCount) nextDestIndex = 0;
 } while (dest == destAddr);
display("\tWent with ", dest, "\n");
 acl = makeDefaultACL();
 fwdObj = send "createObject"("ConnectAndForward", acl, thisObject,
 src, dest, tries + 1) to ObjectCreator;
}

class Local . ConnectAndForward {
 oid forwardController;
 string destinationAddr;
 oid srcObj;
 oid sinkObj;
 oid connObj;
 int sidesOpen;
 int attemptCount;
} inherits from Object;

ConnectAndForward:create(oid fwdCntrl, oid source, string destAddr, int tries)
{
 assoc acl, connACL;

 forwardController = fwdCntrl;
 destinationAddr = destAddr;
 srcObj = source;
 attemptCount = tries;

 acl = makeDefaultACL();
 connACL = makeDefaultACL();

 connObj = send "createObject"("EstablishConnection", acl, destAddr,
 thisObject, connACL) to ObjectCreator;
}

ConnectAndForward:delete()
{
 if (srcObj != nil) send "deleteYourself" to srcObj;
 if (connObj != nil) send "deleteYourself" to connObj;
 if (sinkObj != nil) send "deleteYourself" to sinkObj;
}

ConnectAndForward:connectionAttemptFailed(int rc)
{
 send "failedConnection"(destinationAddr, srcObj, attemptCount)
 to forwardController;
 srcObj = nil; // we no longer own it...
 send "deleteYourself" to thisObject;
}

12

ConnectAndForward:connectionEstablished(oid ioObj)
{
 send "deleteYourself" to connObj; // its job is done...
 connObj = nil;
 sinkObj = ioObj;
 sidesOpen = 2;
 send "selectForRead"(thisObject) to srcObj;
 send "selectForRead"(thisObject) to sinkObj;
}

ConnectAndForward:canRead(oid obj)
{
 oid dest;
 any data;
 int rc;

 data = send "readBytes"(4096) to obj;
 if (obj == srcObj) {
//display("reading from browser, forwarding to web server\n");
 dest = sinkObj;
 } else {
//display("reading from web server, forwarding to browser\n");
 dest = srcObj;
 }

 if (typeOf(data) == string) { // normal forwarding...
 // TO DO: make sure all were written...
 send "writeBytes"(data) to dest from nil;
 send "selectForRead"(thisObject) to obj;
 exit; // all done...
 }
 // EOF was detected...
 send "closeForRead" to obj from nil;
 send "closeForWrite" to dest from nil;
 sidesOpen -= 1;
display("EOF on connection to ", destinationAddr, " sidesOpen=", sidesOpen, "\n");
if (obj == srcObj) display("\tcame from source\n");
else display("\tcame from sink\n");
 if (sidesOpen == 0) {
 send "deleteYourself" to thisObject; // we're done...
 }
}

SSMMTTPP SSeerrvveerr
While file-based I/O usually seems to be performed without noticeable delay, I/O
over network connections to a remote host invariably involves delays. Such delays
arise from unavoidable network latencies and the occasional retransmission of data
due to lost packets. Consequently, an application that desires a certain number of
bytes of data cannot assume that its request will be satisfied in full if it reads directly
from a stream represented by an IOobject. In a similar vein, many applications
need to read variable length records from a stream, such as lines of text in a file.
Both of these problems are handled by the very useful ReadBuffer class. The
example below is a complete Simple Mail Transfer Protocol (SMTP, see RFC 2821)
server. It integrates with the SMTPmailboxService describes in the section
entitled “Email Mailbox Storage”. The application is broken into two classes, an
SMTPserver which creates an AcceptConnection object to listen for incoming
SMTP connections and an SMTPclientConnection class, which handles an individual
SMTP session. The AcceptConnection class sends its SMTPserver client object a
connectionAccepted message and provides the object Id of an IOobject that
represents a new SMTP connection.

http://www.ietf.org/rfc/rfc2821.txt

13

%include <OMEcore.o2h>

global SMTP {
 const string SMTP_SERVER_ID = "FARGOS/VISTA SMTP Server 1.0";
 const int MAX_IDLE_TIME = 300;
};

class Local . SMTPserver {
 assoc configParams;
 oid listenObj;
 int connectionsAccepted;
} inherits from Object;

SMTPserver:create(string listenAtAddr, string hostName)
{
 assoc acl, connACL;
 string smtpHostName, listenAddress;

 if (length(hostName) > 0) {
 smtpHostName = hostName;
 } else {
 smtpHostName = getSystemInfoAttribute("hostName");
 }
 configParams["hostName"] = smtpHostName;

 if (typeOf(listenAtAddr) == string) {
 listenAddress = listenAtAddr;
 } else {
 listenAddress = "tcp:0.0.0.0:25,l";
 }

 connACL = makePermitEveryoneACL();
 acl = makeDefaultACL();
 listenObj = send "createObject"("AcceptConnection", acl,
 listenAddress, thisObject, connACL) to ObjectCreator;

 send "addNotifyOnShutdown"(thisObject) to "ShutdownService";
display("SMTPserver operating on ", listenAddress, "\n");
}

SMTPserver:delete()
{
 if (listenObj != nil) send "deleteYourself" to listenObj;
}

SMTPserver:systemShutdown()
{
/*!
Because it provides a long-running service, class=SMTPserver objects
register themselves with the class=ShutdownService,
which sends a method=systemShutdown notification when a graceful shutdown
is requested.
!*/
 send "deleteYourself" to thisObject;
}

14

SMTPserver:connectionAccepted(oid newSocket)
{
/*!
When new HTTP connections are received, the method=connectionAccepted
method creates a class=HTTPfastReceive object to handle the I/O and
processing of any requests.
!*/
 assoc acl;

// becomePseudoUser();
 connectionsAccepted += 1;
 acl = makeDefaultACL();
 send "createObject"("SMTPclientConnection", acl, newSocket,
 configParams)
 to ObjectCreator from nil; // don't bother with response
}

class Local . SMTPclientConnection {
 enum ParseStates { HELLO, MAIL, DATA, DONE };
 oid connObj;
 oid readBfr;
 oid mailboxService;
 string peerAddress;
 string claimedPeerName;
 int lastRequestTime;
 assoc serverConfig;
 oid timerObj;
 int currentParseState;
 set recipients;
 set recipientAddrList;
 set senders;
 set mailBody;
 int sessionClosed;
 oid shutdownOID;
} inherits from Object;

15

SMTPclientConnection:create(oid newSocket, assoc configParams)
{
 assoc acl, currentTime;
 int t, rc;
 string date, initialLine;

 connObj = newSocket;
 serverConfig = configParams;
 peerAddress = send "getPeerAddress" to connObj;
display("New STMP connection from ", peerAddress, "\n");

 mailboxService = lookupLocalService("MailboxDirectory");
 if (mailboxService == nil) {
 send "writeBytes"("421 No MailboxDirectory\r\n") to connObj from nil;
 send "deleteYourself" to thisObject;
 exit;
 }

 lastRequestTime = getLocalRelativeTime();
 currentTime = convertLocalRelativeTimeToAbsolute(lastRequestTime, 0);
 date = rfc1123Date(currentTime);

 initialLine = makeAsString("220 ", serverConfig["hostName"],
 " ", SMTP_SERVER_ID, "; local time is ", date, "\r\n");
 rc = send "writeBytes"(initialLine) to connObj;
display("wrote len=", rc, "\n");
 if (rc <= 0) {
display("Could not announce to client: ", initialLine, "\n");
 send "deleteYourself" to connObj;
 send "deleteYourself" to thisObject;
 exit;
 }

 currentParseState = HELLO;

 acl = makeDefaultACL();
 readBfr = send "createObject"("ReadBuffer", acl, connObj)
 to ObjectCreator;

 // NOTE: end of line delimeter must be set to CR/LF for correctness.
 // RFC 2821, section 4.1.1.4 requires that a single LF MUST NOT
 // be acccepted, even if it would seem to tolerate incorrect
 // implementations. This is one case where being tolerant in
 // what one accepts is explicitly disallowed.
 send "setDelimeter"("\r\n") to readBfr;

 send "selectForRead" to readBfr;

 timerObj = send "createObject"("TimerEvent", acl,
 thisObject, MAX_IDLE_TIME) to ObjectCreator;

 shutdownOID = thisObject;
 send "addNotifyOnShutdown"(shutdownOID) to "ShutdownService";
}

SMTPclientConnection:delete()
{
 if (readBfr != nil) send "deleteYourself" to readBfr;
 if (shutdownOID != nil) {
 send "removeNotifyOnShutdown"(shutdownOID) to "ShutdownService";
 }
}

16

SMTPclientConnection:timerExpired(oid timerObj)
{
 assoc acl;
 int t, delta;

 if (sessionClosed == 1) {
display("Session was closed, time to delete\n");
 send "deleteYourself" to thisObject;
 exit;
 }

 t = getLocalRelativeTime();
 delta = t - lastRequestTime;
 if (delta > MAX_IDLE_TIME) {
display("SMTP client connection with ", peerAddress, " timed out\n");
 send "deleteYourself" to thisObject;
 exit;
 }

 acl = makeDefaultACL();
 timerObj = send "createObject"("TimerEvent", acl,
 thisObject, MAX_IDLE_TIME, t) to ObjectCreator;
}

SMTPclientConnection:canRead(oid bfr)
{
 any line, tokens;
 string cmd;
 int rc;

 lastRequestTime = getLocalRelativeTime();
 line = send "readLine" to readBfr;
display("SMTP client line=", line, "\n");
 if (line == nil) { // EOF
display("Unexpected EOF from SMTP client ", peerAddress, "\n");
 send "deleteYourself" to readBfr;
 readBfr = nil;
 sessionClosed = 1;
 exit;
 }
 if (currentParseState == DATA) {
display("accepting message body\n");
 if (line != ".") {
 if (length(line) > 0) {
 if (midchar(line, 0) != '.') mailBody += line;
 else { // delete initial period
 mailBody += midstr(line, 1, length(line) - 1);
 }
 }
 mailBody += "\r\n";
 } else { // process mail message...
 call "_processMail"();
 }
 } else {
 tokens = tokenizeString(line, " \t\r\n", 0);
display("tokenized line=", tokens);
 if (elementCount(tokens) > 0) {
 cmd = convertCase(tokens[0], 0);
 } else {
 cmd = ""; // bogus command
 }

17

 if (cmd == "HELO") {
 call "_helo"(tokens);
 } else if (cmd == "EHLO") {
 call "_ehlo"(tokens);
 } else if (cmd == "MAIL") {
 call "_mail"(tokens);
 } else if (cmd == "RCPT") {
 call "_rcpt"(tokens);
 } else if (cmd == "DATA") {
 if (elementCount(tokens) != 1) {
 send "writeBytes"("501 No argument expected\r\n") to connObj
from nil;
 } else {
 send "writeBytes"("354 Send mail body; end with
<CR><LF>.<CR><LF>\r\n") to connObj from nil;
 }
 call "_addTraceLine"();
 currentParseState = DATA;
 } else if (cmd == "QUIT") {
 if (elementCount(tokens) != 1) {
 line = "501 No argument expected\r\n";
 } else {
 line = makeAsString("221 ", serverConfig["hostName"],
 " is now closing transmission channel\r\n");
 }
 send "writeBytes"(line) to connObj from nil;
 send "deleteYourself" to readBfr;
 readBfr = nil;
 sessionClosed = 1;
 exit;
 } else if (cmd == "RSET") {
 call "_reset"();
 if (elementCount(tokens) != 1) {
 send "writeBytes"("501 No argument expected\r\n") to connObj
from nil;
 } else {
 send "writeBytes"("250 OK Reset was done\r\n") to connObj from nil;
 }
 } else if (cmd == "VRFY") {
 call "_vrfy"(tokens);
 } else if (cmd == "EXPN") {
 call "_expn"(tokens);
 } else if (cmd == "HELP") {
 call "_help"(tokens);
 } else if (cmd == "NOOP") {
 send "writeBytes"("250 OK Did nothing\r\n") to connObj from nil;
 } else {
 send "writeBytes"("500 Command not implemented\r\n") to connObj from
nil;
 }
 }
 send "selectForRead" to readBfr;
}

18

SMTPclientConnection:_reset()
{
 mailBody = emptySet;
 recipients = emptySet;
 recipientAddrList = emptySet;
 senders = emptySet;
 currentParseState = HELLO;
 return (0);
}

SMTPclientConnection:_addTraceLine()
{
 assoc currentTime;
 string traceLine;
 int requestTime;

 requestTime = getLocalRelativeTime();
 currentTime = convertLocalRelativeTimeToAbsolute(lastRequestTime, 0);
 traceLine = makeAsString("Received: from ", claimedPeerName, " ([",
 peerAddress, "])", "\r\n",
 " ", "by ", serverConfig["hostName"],
 " (", SMTP_SERVER_ID, ")",
 "\r\n",
 " ", "via TCP", " ", "with SMTP", "\r\n",
 " ", "for ", recipientAddrList,
 "; ", rfc1123Date(currentTime), "\r\n");

 mailBody += traceLine;
 return (0);
}

19

SMTPclientConnection:_helo(array tokens)
{
 string response;

 call "_reset"();

 if (typeOf(tokens[1]) == string) claimedPeerName = tokens[1];
 else claimedPeerName = "didNotSay";

 response = makeAsString("250 ", serverConfig["hostName"], " Hello ",
 peerAddress, "\r\n");
 send "writeBytes"(response) to connObj from nil;
 return (0);
}

SMTPclientConnection:_ehlo(array tokens)
{
 string response;

 call "_reset"();

 if (typeOf(tokens[1]) == string) claimedPeerName = tokens[1];
 else claimedPeerName = "didNotSay";

 // Announce support for RFC 1652 - 8Bit-MIMEtransport
 response = makeAsString("250-", serverConfig["hostName"], " Hello ",
 peerAddress, "\r\n",
 "250 8BITMIME\r\n");
 send "writeBytes"(response) to connObj from nil;
 return (0);
}

SMTPclientConnection:_help(array tokens)
{
 set lines;
 string l;

 lines += "214-FARGOS/VISTA SMTP Server\r\n";
 lines += "214-Commands: HELO ELHO MAIL RCPT DATA QUIT\r\n";
 lines += "214- VRFY EXPN\r\n";
 lines += "214- RSET NOOP HELP\r\n";
 lines += "214 End of HELP output\r\n";
 l = makeAsString(lines);
 send "writeBytes"(l) to connObj from nil;
 return (0);
}

20

SMTPclientConnection:_mail(array tokens)
{
 oid mailbox;
 string response, fromCmd, user;

 if (currentParseState != HELLO) {
 send "writeBytes"("503 Transaction already in progress\r\n")
 to connObj from nil;
 return (0);
 }
 if (elementCount(tokens) < 2) {
 send "writeBytes"("501 FROM: argument required\r\n") to connObj from nil;
 return (0);
 }
 if (tokens[1] == "FROM:") {
 user = tokens[2];
 } else {
 fromCmd = midstr(tokens[1], 0, 5);
 fromCmd = convertCase(fromCmd, 0);
 if (fromCmd != "FROM:") {
 send "writeBytes"("501 Mailbox Syntax error -- no FROM:\r\n")
 to connObj from nil;
 return (0);
 }
 user = midstr(tokens[1], 5, length(tokens[1]) - 5);
 }

 senders += user;
 send "writeBytes"("250 OK\r\n") to connObj from nil;
 currentParseState = MAIL;
 return (0);
}

21

SMTPclientConnection:_rcpt(array tokens)
{
 oid mailbox;
 string response, toCmd, user;
 assoc info;

 if (currentParseState != MAIL) {
 send "writeBytes"("503 Need to issue MAIL before RCPT\r\n")
 to connObj from nil;
 return (0);
 }
 if (elementCount(tokens) < 2) {
 send "writeBytes"("501 TO: argument required\r\n") to connObj from nil;
 return (0);
 }
 if (tokens[1] == "TO:") {
 user = tokens[2];
 } else {
 toCmd = midstr(tokens[1], 0, 3);
 toCmd = convertCase(toCmd, 0);
 if (toCmd != "TO:") {
 send "writeBytes"("553 Mailbox Syntax error -- no TO:\r\n")
 to connObj from nil;
 return (0);
 }
 user = midstr(tokens[1], 3, length(tokens[1]) - 3);
 }

 mailbox = send "lookupMailbox"(user) to mailboxService;
 if (mailbox == nil) {
 response = makeAsString("550 ", user, " user unknown\r\n");
 send "writeBytes"(response) to connObj from nil;
 return (0);
 }
 recipients -= mailbox; // prune out any duplicates -- deliver once
 recipients += mailbox;
 info = send "getMailboxInfo" to mailbox;
 if (recipientAddrList != emptySet) {
 recipientAddrList += ", ";
 }
 recipientAddrList += makeAsString("<", info["fqName"], ">");

 response = makeAsString("250 OK for ", info["fqName"], "\r\n");
 send "writeBytes"(response) to connObj from nil;
 return (0);
}

22

SMTPclientConnection:_vrfy(array tokens)
{
 // 550 userName user unknown
 // 250 FirstName LastName <account@host.domain>
 oid mailbox;
 string response;
 assoc info;

 mailbox = send "lookupMailbox"(tokens[1]) to mailboxService;
 if (mailbox == nil) {
 response = makeAsString("550 ", tokens[1], " user unknown\r\n");
 send "writeBytes"(response) to connObj from nil;
 return (0);
 }
 info = send "getMailboxInfo" to mailbox;
 response = makeAsString("250 ", info["fullName"],
 " <", info["fqName"], ">\r\n");
 send "writeBytes"(response) to connObj from nil;
 return (0);
}

SMTPclientConnection:_expn(array tokens) alias for _vrfy;

SMTPclientConnection:_processMail()
{
 oid mailbox;
 string mailMessage, response;

display("recipients=", emptySet + recipients);
 mailMessage = makeAsString(mailBody); // convert to big string
 for mailbox in recipients do {
 send "storeMail"(mailMessage) to mailbox from nil;
 }
 response = "250 OK\r\n"; // all done...
 send "writeBytes"(response) to connObj from nil;

 call "_reset"();
 return (0);
}

While improbable, a very slow email transfer may be in progress at the same time an
administrator decides to shutdown the system. The SMTP RFC does address this
case and specifies that a “421” error notification should be sent and then the
connection should be closed (see section 3.9 of RFC 2821). To comply with the RFC,
an SMTPclientConnection object can request notification of a system shutdown by
sending an addNotifyWhenShutdown message to the SystemShutdown service
(see the last line of the SMTPclientConnection:create method). The
systemShutdown method below handles such notifications.

SMTPclientConnection:systemShutdown()
{
 string line;
 int rc;

 line = makeAsString("421 ", serverConfig["hostName"],
 " is shutting down\r\n");
 rc = send "writeBytes"(line) to connObj;
 send "deleteYourself" to readBfr;
 readBfr = nil;
 sessionClosed = 1;
 shutdownOID = nil;
}

http://www.ietf.org/rfc/rfc2821.txt

23

Applications with Meta-Objects
The FARGOS/VISTA Object Management Environment supports a concept called
reflection3. A meta object can be associated with an existing object, which permits
the meta object to enhance the existing object. In computer science theory,
reflection permits higher-level layers to re-implement the lower layers. When a
meta object M is associated with an object O, any message sent to object O is
redirected to meta object M for processing. The meta object must implement a
reflectedMessage method, which is always passed four arguments:

1. the destination object Id
2. a string that specifies the name of the method that was to be invoked
3. an array of arguments for the method
4. the source of the message (e.g., fromObject)

The example below illustrates a variation of the services provided by the
TraceInvocations debugging class. The create method issues a setMeta request
(implemented by the base class Object) against the target object. The
reflectedMessage method displays the method invocation data and forwards the
request as-is to the associated object, thus yielding a per-object tracing service that
does not affect the operation of an application.

%include <OMEcore.o2h>

global {
const string srcID = "Id";
};

class Local . TraceInvocations {
 oid clientObj;
} inherits from Object;

// client is public address...
TraceInvocations:create(oid client)
{
 array methodList;

 clientObj = client;
 send "setMeta"(thisObject) to clientObj;
}

TraceInvocations:delete()
{
 if (clientObj != nil) {
 send "setMeta"(nil) to clientObj;
 }
}

TraceInvocations:disableTrace()
{
 if (clientObj != nil) {
 send "setMeta"(nil) to clientObj;
 clientObj = nil;
 }
 if (fromObject != nil) return (0);
}

TraceInvocations:reflectedMessage(any destination, string methodName,
 array methodArgv, any fromObj)
{
 display("reflectedMess:method=", methodName, " argv=",argv);
 send (methodName)(arrayToSet(methodArgv)) to clientObj from fromObj;
}

3 J. Ferber, "Computational reflection in class based object-oriented languages",
OOPSLA 1989 conference proceedings, pp. 317-326, 1989.

24

The use of the debugging facility demonstrated above is illustrated by the TestTrace
class below. It makes use of a TestTraceObj class that serves as a target object for
method invocations.

class Local . TestTrace {
 oid traceObj;
} inherits from Object;

TestTrace:create()
{
 oid obj;
 assoc acl;
 int i;

 acl = makeDefaultACL();
 obj = send "createObject"("TestTraceObj", acl) to ObjectCreator;
 traceObj = send "createObject"("TraceInvocations", acl, obj)
 to ObjectCreator;
 display("Start test\n");
 for(i=1;i<=10;i+=1) {
 send "method1"(i) to obj;
 }
 i = send "disableTrace" to traceObj; // make sure it's deleted...
 send "method1"(-123) to obj;
 send "deleteYourself" to traceObj;
 send "deleteYourself" to obj;
 send "deleteYourself" to thisObject;
}

TestTrace:delete()
{
}

class Local . TestTraceObj {
 oid traceObj;
} inherits from Object;

TestTraceObj:create()
{
 display("TestTraceObj created\n");
}

TestTraceObj:delete()
{
}

TestTraceObj:method1()
{
 display("TestTraceObj:method1, argv=", argv);
}

Meta objects can be used in a variety of ways. As illustrated by the example above,
one very important use is to be able to intercept invocations against an object
without requiring knowledge ahead of time of a method's name or argument list.
Another is to extend the behavior of existing code to which one does not have access
to the source code. In theory, extremely well designed object-oriented code would
provide the opportunity for local extensions via inheritance. In practice, this level of
design engineering is not achieved by application programmers. The use of a meta
object enables the implementation of an object's method to be replaced/overridden.
In environments that require non-stop operation, this same technique can be applied
to deploy bug fixes to an already running application without requiring a restart4.

4 Support for non-stop operation is an often overlooked FARGOS/VISTA capability
because the entire premise is completely foreign to most developers and system
administrators. The capability to have multiple versions of a given class

25

HTTP Server Integration
The following demonstrates a comment page associated with a web server
implemented by the HTTPdaemon. Normally, such a page would be implemented
as a derived class of HTTPcachedObject; however, the example below implements
all of the required methods on its own.

simultaneously in use is another cornerstone of FARGOS/VISTA's support for non-
stop operation.

26

%include <OMEcore.o2h>

global {
 const string URL_DIR_PREFIX = "/services/URLdirectory:";
 const int REDIRECT_CODE = 302; // should be 303
 const int REDIRECT_TYPE = "Moved Temporarily"; // should be See Other
 int requestCount;
}

class Local . WebGuestBookForm {
 oid urlDirectory;
 oid logFileObj;
 string pageName;
 array fieldName;
 assoc outputFieldPos;
 string acknowledgementPage;
 string dbFileName;
 int appendMode;
} inherits from Object;

// serverName logicalPOSTpage fileName-of-ackTemplate addressFileName dbFileName
ouputFieldName1 inputFormfield1 ...

// DEFINED OUTPUT FIELDS:
// EmailAddress
// FirstName
// MidleInitial
// LastName
// CommentText

WebGuestBookForm:create(string serverName, string page, string ackPage,
 string addrLogFileName, string dbLogFileName, string fieldName1)
{
 int i, count;
 string fileSpec, key;
 assoc acl;

 dbFileName = dbLogFileName;

 // open address log file... (create/append)
 fileSpec = makeAsString("file:", addrLogFileName, ",ca");
 acl = makeDefaultACL();
 logFileObj = send "createObject"("IOobject", acl, fileSpec)
 to ObjectCreator;
 i = send "getID" to logFileObj;
 if (i == -1) {
 display("WebGuestBookForm:create: Could not open ", fileSpec, "\n");
 }

 urlDirectory = lookupLocalService(URL_DIR_PREFIX + serverName);
display("WebGuestBookForm: Got URL directory oid as ", urlDirectory, "\n");
 pageName = page;
 acknowledgementPage = ackPage;
 // DEPENDS ON POSITION OF ARGUMENTS
 count = 0;
 for(i=5;i<argc;i+=2) {
 key = argv[i];
 outputFieldPos[key] = count;
 fieldName[count] = argv[i + 1];
 count += 1;
 }
 send "registerObject"(pageName, thisObject) to urlDirectory
 from nil;
}

27

WebGuestBookForm:delete()
{
 if (urlDirectory != nil) {
 send "removeFromCache"(pageName) to urlDirectory;
 }
 if (logFileObj != nil) {
 send "deleteYourself" to logFileObj;
 }
}

WebGuestBookForm:deleteIfObsolete(int t)
{
 if (fromObject != nil) return (0); // keep always...
}

WebGuestBookForm:checkIfStillValid(int t)
{
 return (1);
}

WebGuestBookForm:getRequest(array requestData, assoc options,
 string replyMethod, oid replyDest)
{
 string body;
 string hdr;

 body = makeAsString("<HTML><HEAD><TITLE>Method Not
Allowed</TITLE></HEAD>\r\n<BODY>\r\n<P>Method Not Allowed: ",
 requestData[1],
 "\r\n<P><HR><P><I>FARGOS/VISTA HTTP server</I></BODY></HTML>\r\n");

 hdr = makeAsString("Content-type: text/html\r\nContent-length: ",
 length(body), "\r\nConnection-close\r\n\r\n");
 send (replyMethod)(405, "Method Not Allowed", hdr, body) to replyDest;
}

WebGuestBookForm:headRequest(array requestData, assoc options,
 string replyMethod, oid replyDest)
{
 string body;
 string hdr;

 body = makeAsString("<HTML><HEAD><TITLE>Method Not
Allowed</TITLE></HEAD>\r\n<BODY>\r\n<P>Method Not Allowed: ",
 requestData[1],
 "\r\n<P><HR><P><I>FARGOS/VISTA HTTP server</I></BODY></HTML>\r\n");

 hdr = makeAsString("Content-type: text/html\r\nContent-length: ",
 length(body), "\r\nConnection-close\r\n\r\n");
 send (replyMethod)(405, "Method Not Allowed", hdr, body) to replyDest;
}

28

WebGuestBookForm:postRequest(array requestData, assoc options,
 string replyMethod, oid replyDest)
{
 array formInfo, dest;
 assoc acl, timeInfo;
 int i, j, count, rc, t;
 assoc condensedData;
 string key, f, fileSpec, tempFileName;
 set writeArgs;
 string body, hdr, text;
 string fileName, comment, firstName, lastName, email;
 oid newFileObj, dbFileObj;

 // FIRST: parse form data...
 formInfo = parseHTTPformData(options["ENTITY_CONTENT"], array);
 for(i=0;indexExists(formInfo, i) != 0;i+=1) {
 j = nextIndex(formInfo[i], 0);
 key = getKeyForIndex(formInfo[i], j);
 condensedData[key] = formInfo[i][key];
 }
display("Output field pos=", outputFieldPos);
display("Condensed data=", condensedData);
display("fieldName=", fieldName);
 // drop any malicious HTML tags...
 comment = condensedData[fieldName[outputFieldPos["CommentText"]]];
 i = findSubstring(comment, "<");
 if (i != -1) { // just get rid of everything...
 comment = midstr(comment, 0, i);
 comment += "[REMAINDER DELETED]";
 }
 firstName = condensedData[fieldName[outputFieldPos["FirstName"]]];
 i = findSubstring(firstName, "<");
 if (i != -1) { // just get rid of everything...
 firstName = midstr(firstName, 0, i);
 firstName += "[REMAINDER DELETED]";
 }
 lastName = condensedData[fieldName[outputFieldPos["LastName"]]];
 i = findSubstring(lastName, "<");
 if (i != -1) { // just get rid of everything...
 lastName = midstr(lastName, 0, i);
 lastName += "[REMAINDER DELETED]";
 }
 email = condensedData[fieldName[outputFieldPos["Email"]]];
 i = findSubstring(email, "<");
 if (i != -1) { // just get rid of everything...
 email = midstr(email, 0, i);
 email += "[REMAINDER DELETED]";
 }

 // Write email entries to CSV log file
 i = 0;
 writeArgs += i; // skip offset = 0
 // Name
 writeArgs += "\"";
 writeArgs += firstName;
 writeArgs += "\",\"";
 writeArgs += condensedData[fieldName[outputFieldPos["MiddleInitial"]]];
 writeArgs += "\",\"";
 writeArgs += lastName;
 writeArgs += "\",\"";
 // Address
 writeArgs += email;
 writeArgs += "\"\n"; // add new line
 send "writeVectorOfBytes"(writeArgs) to logFileObj from nil;
 // CSV line added to address log file...

29

 // NOW ADD COMMENTS TO GUEST BOOK DATA FILE
 requestCount += 1;
 // create temporary file in same directory (to permit rename)...
 tempFileName = makeAsString(dbFileName, "_cpy", requestCount);

 // create/truncate/write
 fileSpec = makeAsString("file:", tempFileName, ",ctw");
 acl = makeDefaultACL();

 newFileObj = send "createObject"("IOobject", acl, fileSpec)
 to ObjectCreator;
 i = send "getID" to newFileObj;

 if (i == -1) {
 display("WebGuestBookForm:post could not open ", fileSpec, "\n");
 send "deleteYourself" to newFileObj;
 // abort with something like an appropriate message....
 call "getRequest"(arrayToSet(argv));
 exit;
 }

 // try to open DB file...
 fileSpec = makeAsString("file:", dbFileName, ",r"); // read-only
 acl = makeDefaultACL();

 dbFileObj = send "createObject"("IOobject", acl, fileSpec)
 to ObjectCreator;
 i = send "getID" to dbFileObj;
 if (i == -1) {
 send "deleteYourself" to dbFileObj;
 dbFileObj = nil;
 }

 // now output to formatted DB file...
 if (appendMode == 1) { // copy original file first...
 call "_copyFile"(dbFileObj, newFileObj);
 }

 writeArgs = emptySet;
 i = 0;
 writeArgs += i; // skip offset = 0
 writeArgs += "";
 writeArgs += comment;
 writeArgs += "
\r\n";
 writeArgs += firstName;
 writeArgs += " ";
 writeArgs += lastName;
 writeArgs += " <<A href=\"mailto:";
 writeArgs += email;
 writeArgs += "\">";
 writeArgs += email;
 writeArgs += ">
\r\n";

 t = getLocalRelativeTime();
 timeInfo = convertLocalRelativeTimeToAbsolute(t, 0);
 writeArgs += rfc1123Date(timeInfo);

 writeArgs += "<HR>\r\n";
 send "writeVectorOfBytes"(writeArgs) to newFileObj from nil;

30

 // now output to formatted DB file...
 if (appendMode == 0) { // copy original file first...
 call "_copyFile"(dbFileObj, newFileObj);
 }
 if (dbFileObj != nil) {
 send "deleteYourself" to dbFileObj;
 }
 rc = send "closeForWrite" to newFileObj; // wait for close..
 send "deleteYourself" to newFileObj;
// unlinkFile(dbFileName);
 rc = renameFile(tempFileName, dbFileName);
display("Rename rc=", rc, "\n");

 text = "successfully recorded";
 body = makeAsString("<HTML><HEAD><TITLE>Thanks for your
Inquiry</TITLE></HEAD>\r\n<BODY><P>",
 "We have ", text," your information.</P><P><A href=\"",
 acknowledgementPage, "\">Continue</P></BODY></HTML>\r\n");

 hdr = makeAsString("Location: ", acknowledgementPage,
 "\r\nContent-type: text/html\r\nContent-length: ",
 length(body), "\r\nConnection-close\r\n\r\n");
display("hdr=", hdr);
 send (replyMethod)(REDIRECT_CODE, REDIRECT_TYPE, hdr, body)
 to replyDest;
display("Method done\n");
}

WebGuestBookForm:_copyFile(oid srcFile, oid destFile)
{
 any data;

 if (srcFile == nil) return (-1);
 data = send "readBytes"(0x1000) to srcFile;
 while (data != nil) {
 send "writeBytes"(data) to destFile from nil;
 data = send "readBytes"(0x1000) to srcFile;
 }
 return (0);
}

Remote Object Creation
Because the FARGOS/VISTA infrastructure is transparently distributed, the creation
of an object on a remote system is trivial: rather than send a createObject request
to the local ObjectCreator object, the request is sent to the ObjectCreator object
of the target system. The object Ids of currently known systems can be obtained
through the listRemoteSystems() function. This is illustrated by the code
fragment below:

31

 int i, totalSystems;
 assoc acl;
 oid obj;
 array rmtSys;
 set args;

 rmtSys = listRemoteSystems();
 debugDisplay(debugLogLevel2, "Remote systems=", rmtSys);
 // include ourselves as potential server
 totalSystems = elementCount(rmtSys);
 rmtSys[totalSystems] = ObjectCreator;
 totalSystems += 1;
 debugDisplay(debugLogLevel2, "total systems=", totalSystems, "\n");
 acl = makeDefaultACL();
 for(i=0;i < totalSystems;i += 1) {
 obj = send "createObject"("TestClass", acl, args) to rmtSys[i];
 }

The example above, however, is useful only when the systems of interest represent
a stable and already interconnected population. Robust applications should take
advantage of the notifications of new peers and the loss of existing peers. An object
of class PeerRegistry implements the "/PeerRegistry" service, which monitors the
comings and goings of peers that are known to the local FARGOS/VISTA Object
Management Environment. Interested applications can use the
addNotifyWhenPeerRegistered method to request the delivery of
peerRegistered and peerUnregistered messages.

The example below is a simplified version of the standard class JobController,
which implements a facility for distributing jobs across a cluster of machines. The
current buzzword of the day is “grid computing”, but the technique has been in used
for decades supercomputing. Commentary appears between some of the methods.

32

%include <OMEcore.o2h>

global {
const int MAX_JOBS_PER_SERVER = 2;
};

class Local . JobController {
/*!
Provides a service that distributes tasks across a load-balanced pool
of servers.
!*/
 oid peerRegistry;
 int serverIdCounter;
 assoc serverList;
 array serverOID;
 array serverLoad;
 array serverForJob;
 array queuedWork;
 int firstEntryIndex;
 int lastEntryIndex;
 int maxConcurrentJobs;
 int jobsInProgress;
} inherits from Object;

JobController:create()
{
 peerRegistry = lookupLocalService("/PeerRegistry");
 if (peerRegistry == nil) {
 display("JobController: no /PeerRegistry\n");
 send "deleteYourself" to thisObject;
 }
 send "peerRegistered"(ObjectCreator) to thisObject;

 send "addNotifyWhenPeerRegistered"(thisObject, 1)
 to peerRegistry from nil;
 firstEntryIndex = 1;
 lastEntryIndex = 1;
}

JobController:delete()
{
 if (peerRegistry != nil) {
 send "removeNotifyWhenPeerRegistered"(thisObject)
 to peerRegistry from nil;
 }
}

The peerRegistered method is passed the object Id of the ObjectCreator object of
the remote peer. Since the local system is not a peer, the create method shown
above adds it to the list of available systems by performing the following:

 send "peerRegistered"(ObjectCreator) to thisObject;

When the connection to a peer is lost, the PeerRegistry object sends its clients
peerUnregistered notifications.

33

JobController:peerRegistered(oid remotePeer)
{
 string key;

 if (remotePeer == nil) exit;

 key = makeAsString(remotePeer);
 serverIdCounter += 1;
 serverList[key] = serverIdCounter;
 serverOID[serverIdCounter] = remotePeer;
 serverLoad[serverIdCounter] = 0;

 maxConcurrentJobs = elementCount(serverList) * MAX_JOBS_PER_SERVER;
 while (firstEntryIndex < lastEntryIndex) {
 if (jobsInProgress > maxConcurrentJobs) break;
 call "dequeueJob"();
 }
}

JobController:peerUnregistered(oid remotePeer)
{
 string key;
 int id;

 key = makeAsString(remotePeer);
 id = serverList[key];

 deleteIndex(serverList, key);
 deleteIndex(serverOID, id);
 deleteIndex(serverLoad, id);

 maxConcurrentJobs = elementCount(serverList) * MAX_JOBS_PER_SERVER;
}

JobController:selectServer()
{
 int minId, minLoad, i, l;

 minId = -1;
 minLoad = 0x7f0000;
 for(i=nextIndex(serverLoad, 0);i != 0;i=nextIndex(serverLoad,i)) {
 l = serverLoad[i];
 if (l < minLoad) {
 minLoad = l;
 minId = i;
 }
 }
 return (minId);
}

JobController:queueJob(oid client, any clientInfo, string className, assoc acl, set
args)
{
/*!
Queue a work unit. Result returned to <i>client</i> by sending it a
jobComplete message and passing it <i>clientInfo</i> and the
result of the job.
!*/
 queuedWork[lastEntryIndex] = argv;
 lastEntryIndex += 1;
 if (jobsInProgress < maxConcurrentJobs) {
 call "dequeueJob"();
 }
 if (fromObject != nil) return (0);
}

34

JobController:returnJobResult(int transactionId, any result)
{
/*!
Notes the completion of a queued task.
!*/
 array rec;
 int server;
 oid client;
 any clientInfo;

 if (indexExists(serverForJob, transactionId) == 0) {
 debugDisplay(debugLogLevel3,
 "JobController:jobComplete no such transaction",
 transactionId, "\n");
 exit;
 }
 jobsInProgress -= 1;

 server = serverForJob[transactionId];
 serverLoad[server] -= 1;

 rec = queuedWork[transactionId];
 client = rec[0];
 clientInfo = rec[1];

 deleteIndex(queuedWork, transactionId);
 deleteIndex(serverForJob, transactionId);

 send "jobComplete"(clientInfo, result) to client;
 if (jobsInProgress < maxConcurrentJobs) {
 call "dequeueJob"();
 }
}

JobController:dequeueJob()
{
 array rec;
 string className;
 assoc acl;
 set args;
 oid obj, rmtObj;
 int server, transactionId;

 if (lastEntryIndex == firstEntryIndex) return (0);
 transactionId = firstEntryIndex;
 firstEntryIndex += 1;
 jobsInProgress += 1;

 server = call "selectServer"();
 serverForJob[transactionId] = server;
 rmtObj = serverOID[server];
 serverLoad[server] += 1;

 rec = queuedWork[transactionId];
 className = rec[2];
 acl = rec[3];
 args = rec[4];

 send "createObject"(className, acl, thisObject, transactionId,
 args) to rmtObj from nil;

 return (transactionId);
}

The usage of the JobController class described above is demonstrated by the
following two classes. The TestJobController class creates a JobController object
and issues a series of queueJob requests. Each unit of work is implemented by a
TestJob object, which sends its results back to the JobController object using the
returnJobResult method. Results are received by the TestJobController object
via its jobComplete method.

35

class Local . TestJobController {
 oid controllerObj;
 int queuedJobs;
 int completedJobs;
} inherits from Object;

TestJobController:create(int count)
{
 assoc acl;
 int i;
 set args;

 acl = makeDefaultACL();
 controllerObj = send "createObject"("JobController", acl, "TestPool")
 to ObjectCreator;

 queuedJobs = count;
 args += "hi";
 for(i=1;i<=count;i+=1) {
 send "queueJob"(thisObject, i, "TestJob", acl, emptySet + args)
 to controllerObj from nil;
 }
}

TestJobController:delete()
{
 send "deleteYourself" to controllerObj;
}

TestJobController:jobComplete(any jobInfo, any result)
{
 display("result from job ", jobInfo, " is ", result, "\n");
 completedJobs += 1;
 if (completedJobs == queuedJobs) send "deleteYourself" to thisObject;
}

class Local . TestJob {
 int transactionId;
 oid jobController;
} inherits from Object;

TestJob:create(oid jobCntrl, int transId, any arg1)
{
 string result;

 jobController = jobCntrl;
 transactionId = transId;

 // Do lots of work...
 result = makeAsString("[", transId, ":", arg1, "]");

 // After lots of work completed, return result...
 send "returnJobResult"(transactionId, result) to jobController;

 send "deleteYourself" to thisObject; // all done, delete
}

TestJob:delete()
{
}

The RegisterPoolMembership class provides a convenient (and suggested
standard) mechanism for expressing the willingness of a particular FARGOS/VISTA
Object Management Environment to participate as a member of a server pool. A
given FARGOS/VISTA Object Management Environment can participate in as many
distinct server pools as desired, be it zero, one or a hundred. By respecting the
convention implemented by RegisterPoolMembership, applications can ensure
that they only make use of spare cycles on systems that have intentionally
expressed permission.

36

Persistent Objects
Just as in conventional environments, most FARGOS/VISTA objects are transient and
have a lifetime that will not exceed that of the process into which the object was
instantiated. When data needs to be retained between uses of an application,
conventional environments store such data in a file or database. While accepted as
normal practice, there is usually a clear dichotomy between the in-memory data and
the corresponding copy on some stable media. While such techniques can be used
by FARGOS/VISTA-based applications, it is also possible to use persistent objects. A
persistent object survives the lifetime of the process in which it was initially created.

The FARGOS/VISTA Object Management Environment has several intrinsic
capabilities that are used to implement persistent objects, but most applications
programmers will not concern themselves with the details. Instead, the standard
convenience class PersistentObject is the mechanism of choice. Persistence can be
added to any class by inheriting from the class PersistentObject.

The create method of PersistentObject registers the new persistent object with
the well-known service “/ObjectPager” by sending it a makePersistent message
and passing the object’s Id. This is illustrated below:

 send "makePersistent"(thisObject) to "/ObjectPager";

By default, the “/ObjectPager” service is obtained by instantiating an object of the
class PersistenceService; however, installations can implement the “/ObjectPager”
service using a locally developed solution or other alternatives that are allomorphic
to the class PersistenceService. As noted above, the PersistentObject class uses
the makePersistent method. The remaining methods of the “/ObjectPager” service
are invoked by the external object database daemon. The default version is
provided by the OMEpersistd executable, but this too can easily be replaced by a
locally developed solution. It is actually more probable to replace the OMEpersistd
with an alternative that stores object data as binary large objects in a relational
database than to replace the logic provided by the PersistenceService.

Persistent objects have to deal with some issues that are not faced by transient
objects because a persistent will be restored into environments that have changed
radically. Any transient objects of which it was previously aware will no longer exist.

An external persistence daemon notifies the “/ObjectPager” service of its existence
by sending a databaseConnected message:

 send "databaseConnected"(thisObject) to "/ObjectPager";

The PersistenceService sends a listObjects request to the external persistence
daemon. The returned result is an array that provides the object Ids of all of the
objects maintained by the external persistence daemon. The object Id information is
actually provided as a string that must first be decoded by the decodeData()
function. The object Ids are maintained as strings to permit their storage by
applications that are not aware of FARGOS/VISTA data types. The process of
decoding an object Id and setup of the /ObjectPager service as its meta object is
illustrated by the code fragment below:

 key = list[i];
 mgmtOID = decodeData(key);
 OILsetExternalMetaObject("/ObjectPager", "objectFault", mgmtOID);

37

EEmmaaiill MMaaiillbbooxx SSttoorraaggee
As an illustration of the ease-of-use of the class PersistentObject, an email mailbox
storage system is presented below. It accepts delivery of email received by an SMTP
server and it can be accessed using any POP3-capable email client. The service is
implemented using two classes. One, SMTPmailboxService, implements a
directory of user mailboxes. It is used by creating a single, transient instance each
time the FARGOS/VISTA Object Management Environment starts up. The second
class, SMTPmailbox, is implemented as a derived class of PersistentObject. Each
instance of SMTPmailbox corresponds to the mailbox of one user, thus there would
be many instances of SMTPmailbox. When a new user is added to the system, an
SMTPmailbox object would be created for them at that time. Because an
SMTPmailbox object is persistent, the object would survive terminations of the
FARGOS/VISTA Object Management Environment. If the user’s email account
eventually needs to be removed at some point, the specific SMTPmailbox object
would be deleted by the administrator.

%include <OMEcore.o2h>

implicit {
 const string MAILBOX_SERVICE = "MailboxDirectory";
};

class Local . SMTPmailboxService {
 assoc userNameToMailbox;
 assoc mailboxAliases;
} inherits from Object;

SMTPmailboxService:create()
{
 registerService(MAILBOX_SERVICE, thisObject, 0);
}

SMTPmailboxService:delete()
{
 unregisterService(MAILBOX_SERVICE, thisObject);
}

SMTPmailboxService:registerMailbox(string mailboxName, oid mailbox)
{
 string bracketKey;

 if (indexExists(userNameToMailbox, mailboxName) != 0) {
 return (-1);
 }
 userNameToMailbox[mailboxName] = mailbox;

 bracketKey = makeAsString("<", mailboxName, ">");
 mailboxAliases[bracketKey] = mailboxName;
 return (0);
}

SMTPmailboxService:registerAliases(string mailboxName, string alias1)
{
 int i;

 for(i=1;i<argc;i+=1) {
 mailboxAliases[argv[i]] = mailboxName;
 }
 return (0);
}

38

SMTPmailboxService:unregisterAliases(string alias1)
{
 int i;

 for(i=0;i<argc;i+=1) {
 mailboxAliases = deleteIndex(mailboxAliases, argv[i]);
 }
 return (0);
}

SMTPmailboxService:unregisterMailbox(string mailboxName, oid mailbox)
{
 string bracketKey;

 if (indexExists(userNameToMailbox, mailboxName) == 0) {
display("mailbox name not known=", mailboxName, "\n");
 return (-1);
 }
 userNameToMailbox = deleteIndex(userNameToMailbox, mailboxName);

 bracketKey = makeAsString("<", mailboxName, ">");
 userNameToMailbox = deleteIndex(mailboxAliases, bracketKey);
 return (0);
}

SMTPmailboxService:lookupMailbox(string mailboxName)
{
 string name;

 if (indexExists(userNameToMailbox, mailboxName) != 0) {
 return (userNameToMailbox[mailboxName]);
 }
 if (indexExists(mailboxAliases, mailboxName) != 0) {
 name = mailboxAliases[mailboxName];
 if (indexExists(userNameToMailbox, name) != 0) {
 return (userNameToMailbox[name]);
 }
 }
 return (nil);
}

SMTPmailboxService:listMailboxes()
{
 array result;
 int count, i;

 i = nextIndex(userNameToMailbox, 0);
 while (i != 0) {
 result[count] = getKeyForIndex(userNameToMailbox, i);
 count += 1;
 i = nextIndex(userNameToMailbox, i);
 }
 return (result);
}

39

class Local . SMTPmailbox (1) {
 string userName;
 string fullName;
 string fullyQualified;
 string password;
 array messages;
 int messageTotal;
} inherits from PersistentObject;

SMTPmailbox:create(string forUser, string longName, string pw)
{
 if (argc != 0) {
 call "SMTPmailbox:initialize"(arrayToSet(argv));
 }
}

SMTPmailbox:initialize(string forUser, string longName, string pw)
{

 userName = forUser;
 if (typeOf(longName) == string) {
 fullName = longName;
 } else {
 fullName = userName;
 }
 if (findSubstring(userName, "@") != -1) {
 fullyQualified = userName;
 } else {
 fullyQualified = makeAsString(userName, "@",
 getSystemInfoAttribute("hostName"));
 }
 if (length(pw) > 0) {
 password = pw;
 } else {
 password = "changeme";
 }
 send "registerMailbox"(userName, thisObject)
 to MAILBOX_SERVICE from nil;
 send "registerAliases"(userName, fullyQualified, "<" + fullyQualified + ">")
 to MAILBOX_SERVICE from nil;
 // Initialize persistence, associate with "mailboxes" database
 call "PersistentObject:initialize"("mailboxes");
 return (0);
}

SMTPmailbox:delete()
{
 send "unregisterMailbox"(userName, thisObject)
 to MAILBOX_SERVICE from nil;
 send "unregisterAliases"(fullyQualified, "<" + fullyQualified + ">")
 to MAILBOX_SERVICE from nil;
}

SMTPmailbox:objectImported()
{
display("MAILBOX for ", userName, " imported\n");
 send "registerMailbox"(userName, thisObject)
 to MAILBOX_SERVICE from nil;
 send "registerAliases"(userName, fullyQualified, "<" + fullyQualified + ">")
 to MAILBOX_SERVICE from nil;
}

40

SMTPmailbox:authenticate(string checkPassword)
{
 if (checkPassword == password) return (1);
 return (0);
}

SMTPmailbox:changePassword(string newPassword, string checkPassword)
{
 if (checkPassword != password) {
 return (-1);
 }
 password = newPassword;
 return (0);
}

SMTPmailbox:getMailboxInfo()
{
 assoc attrs;

 attrs["userName"] = userName;
 attrs["fullName"] = fullName;
 attrs["fqName"] = fullyQualified;
 return (attrs);
}

SMTPmailbox:getMessageIds()
{
 array ids;
 int i;

 i = nextIndex(messages, 0);
 while (i != 0) {
 ids[i] = length(messages[i]);
 i = nextIndex(messages, i);
 }
 return (ids);
}

SMTPmailbox:storeMail(string mailBody)
{
debugDisplay(debugLogLevel2, "Store email message:\n", mailBody);
 messageTotal += 1;
 messages[messageTotal] = mailBody;
 return (messageTotal);
}

SMTPmailbox:getMessage(int messageID)
{
 if (indexExists(messages, messageID) == 0) {
 return (nil);
 }
 return (messages[messageID]);
}

41

// Provided for POP3 UIDL command; permit hash to be done locally
// rather than transmit entire message body between systems
SMTPmailbox:getUniqueMessageId(int messageID)
{
 string hash, text;

 if (indexExists(messages, messageID) == 0) {
 return ("doesNotExist");
 }
 hash = SHA1hash(messages[messageID]);
 text = makeAsHexString(hash);
 return (text);
}

// Provided for POP3 TOP command; do work locally rather than transmit
// entire message body between systems
SMTPmailbox:getMessageHeader(int messageID, int bodyLines)
{
 int offset, nextOffset, i;
 string mess, head;

 if (indexExists(messages, messageID) == 0) {
 return (nil);
 }
 mess = messages[messageID];
 offset = findSubstring(mess, "\r\n\r\n"); // end of MIME header
 if (offset == -1) { // no end of MIME header, return everything
 return (mess);
 }
 offset += 4; // length of CR LF CR LF
 for(i=0;i<bodyLines;i+=1) {
 nextOffset = findSubstringAfter(mess, "\r\n", offset);
 if (nextOffset == -1) { // ran out, return everything
 return (mess);
 }
 offset = nextOffset + 2; // after CR LF
 }
 head = midstr(mess, 0, offset);
 return (head);
}

SMTPmailbox:deleteMessages(int messageID)
{
 int i, id;

 for(i=0;i<argc;i+=1) {
 id = argv[i];
 if (indexExists(messages, id) == 0) {
 return (id);
 }
 messages = deleteIndex(messages, id);
 }
 return (0);
}

Byzantine Fault-Tolerant Transactions

	Notice of Rights
	Trademarks
	Abbreviations
	Notice of Liability
	Programming FARGOS/VISTA-based Applications
	FARGOS/VISTA Software Development Kit
	Getting Started
	Creating an Object
	Access Control Lists
	Object Ids

	Doing Several Things at Once
	Well-Known Services
	Debugging using a Web Browser
	Timers
	Input Buffers and Asynchronous Input/Output
	Load Balancing Front-End for TCP-based Services
	SMTP Server

	Applications with Meta-Objects
	HTTP Server Integration
	Remote Object Creation
	Persistent Objects
	Email Mailbox Storage

	Byzantine Fault-Tolerant Transactions

