
Version: 4/12/2002 5:04 PM 

 

 

FFAARRGGOOSS//VVIISSTTAA  
Installation Guide 



 

ii 

FARGOS/VISTA Installation Guide 
FARGOS Development, LLC 
757 Delano Road 
Yorktown Heights, NY  10598 
http://www.fargos.net 
mailto:support@fargos.net 
 
Copyright   2001 - 2002 FARGOS Development, LLC 

NNoottiiccee  ooff  RRiigghhttss  
All rights reserved.  This document may be rendered into whatever form is useful for 
the user, including electronic transmission or printing, so long as the content is not 
altered. 

TTrraaddeemmaarrkkss  
FARGOS/VISTA, FARGOS/SolidState and FARGOS/SolidConnection are trademarks of 
FARGOS Development, LLC. 

AAbbbbrreevviiaattiioonnss  
FARGOS Development, LLC is a Limited Liability Company registered with the State 
of New York.  It is required to identify itself as such in its name, hence the “, LLC” 
suffix.  For purposes of readability in this document, the “, LLC” suffix is sometimes 
dropped.  The phrase “FARGOS Development” always denotes “FARGOS 
Development, LLC” and is not intended to suggest any alternate form of 
organization. 

NNoottiiccee  ooff  LLiiaabbiilliittyy  
Information in this document is distributed on an “As Is” basis, without warranty.  
While every precaution has been taken in the preparation of this document, FARGOS 
Development, LLC shall not have any liability to any person or entity with respect to 
any loss or damage caused or alleged to be caused directly or indirectly by the 
instructions contained within this document or by the computer software or hardware 
products described in it.

http://www.fargos.net/
mailto:support@fargos.net


 

iii 

Contents 
Installing FARGOS/VISTA Distributions................................................................1 

Installation under Solaris................................................................................3 
Installation under Red Hat Linux .....................................................................3 
Installation under OpenBSD............................................................................3 
Installation under Microsoft Windows ...............................................................4 

Environment Variables ......................................................................................4 
Magic Numbers ..............................................................................................10 
Makefile Rules................................................................................................12 
Further Reading .............................................................................................13 
 

 



 

1 

1. Installing FARGOS/VISTA Distributions 
FARGOS/VISTA provides a high-performance, transparently distributed, 
multithreaded, architecture-neutral object-oriented environment that supports a 
variety of hardware/operating system combinations.  When possible, FARGOS 
Development, LLC makes use of the host platform's preferred software deployment 
technology.  Since this varies from operating system to operating system, the 
installation procedure is unfortunately platform-specific. 

While the particulars of installation vary, there is a common deployment structure 
followed on every platform supported by FARGOS/VISTA.  The root of a 
FARGOS/VISTA distribution can be placed anywhere the system administrator 
chooses; the default location will vary depending on the target operating system.  
The layout of the distribution tree is illustrated in Figure 1.  It is possible to place all 
of the files associated with every platform supported by FARGOS/VISTA on a single 
file server.  In an enterprise environment, this can create a single place to apply 
updates but also creates a single point of failure. 

 



 

2 

$VISTA_ROOT

include

oil2anf

oil2Include

config

hostname

classDoc

Standard Local

Linux | OpenBSD |
SuonOS | Windows

bin lib dynamic

 

Figure 1 



 

3 

Installation under Sun Solaris 
Sun Solaris uses the pkgtrans and pkgadd commands to convert and install a 
distribution package.  Assuming that the FARGOS/VISTA Software Development Kit 
was downloaded as the file /tmp/vista.pkg, the following two commands will install it 
in the default location, /opt/FRGSvista: 

 # pkgtrans /tmp/vista.pkg /var/spool/pkg 
 # pkgadd FRGSvista 

 

The package is prepared so that it is relocatable, thus it can be installed to an 
alternate location.  Use the –R option of pkgadd to indicate the desired root of the 
directory tree.  For example, the following places the distribution under the directory 
/usr/local/vista: 

 # pkgadd –R /usr/local/vista FRGSvista 

The package can be removed using the pkgrm command: 

 # pkgrm FRGSvista 

Installation under Linux Variants 
Linux users can use the Red Hat Package Manager tool, rpm, to install and remove 
prepared software packages.  While obviously available as part of Red Hat Linux 
distribution, the rpm utility is provided by most every Linux distribution (e.g., SuSE 
for S/390).   RPM file names have a well-defined structure that embeds version, 
release and CPU architecture information.  Assuming that version 2.5, release 1 of 
the FARGOS/VISTA Software Development Kit for Intel-compatible processors was 
downloaded as the file /tmp/vistasdk-2.5-1-i386.rpm, the following command will 
install it in the default location: 

 # rpm –i /tmp/vistasdk-2.5-1-i386.rpm 

The actual RPM file name will be different as the “2.5-1” part of the file name will 
have been altered to correspond to the current version of the package.  The 
FARGOS/VISTA Software Development Kit is created as a relocatable package, so the 
install location can be explicitly set using the rpm prefix option: 

 # rpm –i –prefix=/home/vista /tmp/vistasdk-2.5-1-i386.rpm 

A previously installed version can be removed using the –e option of the rpm 
command: 

 # rpm –e vistasdk  

Installation under OpenBSD 
Users of OpenBSD systems can use the pkg_add utility to install the FARGOS/VISTA 
Software Development Kit.  Assuming that the package was downloaded as 
/tmp/vistasdk.tgz, the following command will install it to the default location: 

 # pkg_add /tmp/vistasdk.tgz 

The package is relocatable, so it can be installed to an alternate location using the –p 
option of the pkg_add command: 

 # pkg_add –p /usr/local/vista /tmp/vistasdk.tgz 

OpenBSD packages are removed using the pkg_delete command: 



 

4 

 # pkg_delete vistasdk 

Installation under Microsoft Windows 
Users of many Microsoft Windows variants (but not Microsoft Windows 3.1 or 
Microsoft Windows NT 3.51) can install the FARGOS/VISTA Software Development Kit 
by running the VISTAsdk.exe setup program.  The setup program will prompt for a 
destination directory, which provides an opportunity to install the package anywhere. 
All files will be placed under the selected directory.  No files are copied to the system 
directories.  Once the software is installed, the setup program will set the 
VISTA_ROOT environment variable to point at the chosen installation directory and 
the VISTA_UNAME environment variable to the value of “Windows”.  Under Microsoft 
Windows NT-derived systems, the environment variables are maintained in the 
registry and are immediately available for newly spawned programs.  Under 
Microsoft Windows 95-derived systems, the environment variables are placed into 
the c:\autoexec.bat file and the system will require a reboot for the new setting to 
take effect. 

The software can be deleted by accessing the Control Panel (Start ! Settings ! 
Control Panel) and invoking “Add/Remove Programs”.  Select "FARGOS/VISTA 
Software Development Kit" from the list of removable software and click on the 
Add/Remove button. 

MMiiccrroossoofftt  WWiinnddoowwss  NNTT  SSeerrvviicceess  
Several of the FARGOS/VISTA components can be used as long-running processes.  
A special utility, OMEregNTserv.exe in the $VISTA_ROOT/Windows/bin directory, 
can be used to register these programs as services.  Once registered as a service, 
they can be managed using the relevant Microsoft Windows Service Configuration 
Manager.  The OMEregNTserv.exe utility can also delete previously made 
registrations of such FARGOS/VISTA daemons.  Its prototype is: 

OMEregNTserv –add servName [options] 
OMEregNTserv –delete servName 

The service name parameter, servName, can be specified as a case-sensitive sub-
string of the following known services: 

• vista.exe 
• OMEexecprog.exe 
• OMEpersistd.exe 

If no option is provided for the vista service, it defaults to using an rc file of 
$VISTA_ROOT/config/service.rc, where $VISTA_ROOT is evaluated at the time of the 
execution of the OMEregNTserv.exe program—if the environment variable’s value 
is changed later, the path name will remain the same.  Some examples: 

OMEregNTserv –add vista 
OMEregNTserv –delete vista 
OMEregNTserv –add vista.exe d:\vista\config\localHTTP.rc 

Once started, the processes will respond to status inquiry and stop requests. 

2. Environment Variables 
Several environment variables control the operation of FARGOS/VISTA utilities.  The 
FARGOS/VISTA-specific variables are described in Table 2; variables that are defined 



 

5 

by other organizations are described in Table 3 and Table 4.  Of all the environment 
variables, two should be viewed as mandatory: 

• VISTA_ROOT 
• VISTA_UNAME 

The VISTA_UNAME environment variable identifies the type of the underlying 
platform and indicates both operating system and machine architecture.  It exists to 
permit a file server to export a single directory tree that make available multiple 
FARGOS/VISTA distributions, such as for Linux on Intel x86 and IBM S/390, Sun 
Solaris for SPARC and Intel x86, OpenBSD for Intel x86 and SPARC, etc.  Only shell 
scripts normally need the VISTA_UNAME environment variable, which they would use 
to locate a platform-specific FARGOS/VISTA executable or library.  Setting 
VISTA_UNAME is mandatory on Unix variants, but it can be overlooked under 
Windows variants if only MS-DOS batch scripts are used.  To avoid potential 
problems in the future that would arise by the release of applications that depend on 
this environment variable, it is strongly recommended that the VISTA_UNAME 
environment variable be set on all platforms.  Some currently used values: 

Table 1 

Hardware Platform Operating 
System 

VISTA_UNAME Notes 

Intel 386 Red Hat Linux Linux_i386 Generic x86-
based release 

Intel Pentium III Red Hat Linux Linux_i686 Optimized for 
Pentium II and 
above 

IBM System/390 SuSE Linux Linux_s390  

Intel Pentium III Sun Solaris SunOS_i386 Generic x86-
based release 

Intel Pentium III OpenBSD OpenBSD_i386 Generic x86-
based release 

Intel Pentium III Microsoft Windows Windows Generic 32-bit 
Windows 

Sun UltraSPARC Sun Solaris SunOS_sparc 32-bit release 

Sun UltraSPARC Sun Solaris SunOS_sparcv9 64-bit release 

Note:  there is no simple, universal, programmatic mechanism to determine the 
correct and optimal value of VISTA_UNAME.  The closest for Unix variants would be: 

 VISTA_UNAME=`uname –s`_`uname –m` 

Because no FARGOS/VISTA-related application internally derives a value for 
VISTA_UNAME, site administrators can configure and deploy their own naming 
conventions.  Such site-specific conventions are useful for parallel deployment of 
production, developer and test configurations. 

The root of the FARGOS/VISTA distribution tree should be stored in the environment 
variable VISTA_ROOT.  How this environment variable gets set is operating system-
specific and users may be required to set the environment variable in their login 
scripts. 



 

6 

Consider that the default for VISTA_ROOT under Solaris is /opt/FRGSvista.  For a 
user of the Bourne-equivalent shells, (e.g., sh, bash, or ksh), one would add to 
$HOME/.profile: 

 VISTA_ROOT=/opt/FRGSvista; export VISTA_ROOT 

For csh users, one would add to $HOME/.login: 

 setenv VISTA_ROOT /opt/FRGSvista 

While the VISTAsdk.exe setup program for Microsoft Windows sets the 
VISTA_ROOT environment variable as part of the installation process, a Microsoft 
Windows user might have occasion to manually configure his current session so as to 
point at a test release or a CD-ROM distribution.  This can be done by altering the 
default environment (under a Windows NT-derived system) or issuing an MS-DOS 
SET command in a command shell: 

 SET VISTA_ROOT=C:\Progra~1\VISTA 

Note:  unlike most operating systems, Microsoft Windows file names are permitted 
to have embedded spaces.  Indeed, many of the standard directories defined by 
Microsoft are comprised of two words separated by a space.  Unfortunately, the vast 
majority of programs use white space to separate command-line parameters.  Thus, 
a directory like "Program Files" would almost invariably be parsed as two parameters 
("Program" and "Files").  For this reason, the VISTAsdk.exe setup program 
computes the short form (8.3) of the root directory to ensure that no spaces appear 
in the path specification stored in VISTA_ROOT. 



 

7 

Table 2 

Variable Description 

VISTA_ROOT Specifies the directory that is the root of 
FARGOS/VISTA distribution.  For most 
installations, this will be the only variable 
that needs to be set as the default 
settings are based upon this variable and 
normally yield the desired result. 

VISTA_UNAME Specifies the underlying operating 
system and machine type.  For Unix 
systems, often the value should be set 
using what is returned by the 
concatenation of the output from the 
“uname –s” and “uname –m” 
commands, separated by an underscore: 

VISTA_UNAME=`uname –s`_`uname –
m` 

For 32-bit Microsoft Windows systems, 
the value should be set to "Windows".  
No distinction is currently made between 
the variants of 32-bit Windows, such as 
Windows 95 vs. Windows 2000. 

VISTA_LICENSE_PATH A colon- (or semi-colon-) separated path 
of directory names that are searched for 
license files before, and in addition to, 
the standard locations.  The standard 
locations that are always searched are:  
the current working directory, 
$HOME/.vista/hostname, 
$HOME/_vista/hostname, $HOME/.vista, 
$HOME/_vista, 
$VISTA_ROOT/config/hostname, 
$VISTA_ROOT/config. 

OIL2_DOCUMENT_ROOT Specifies the directory under which class 
documentation generated by the OIL2 
compiler will be placed.  This is normally 
not defined and defaults to 
$VISTA_ROOT. 

OIL2_INCLUDE_PATH A colon- (or semi-colon-) separated path 
of directory names that the OIL2 
compiler will first examine when it 
searches for include files.  The OIL2 
compiler will always search the current 
working directory and the directory 
$VISTA_ROOT/oil2Include. 



 

8 

The behavior of some FARGOS/VISTA components is influenced by the settings of 
environment variables that are defined by other standards bodies.  In general, such 
variables affect the process of locating a particular configuration file. 

UUsseerr--SSppeecciiffiicc  CCoonnffiigguurraattiioonn  FFiilleess  
While not often exploited, when a search is performed for a configuration file, a per-
user location has precedence over system-wide defaults.  By convention, such per-
user configuration files are stored under the “.vista” subdirectory of the user’s home 
directory.  The user’s home directory is defined using the environment variables 
described in Table 3.  If a user's home directory is maintained by a file server, host-
specific files can be stored in a subdirectory of .vista that corresponds to the host's 
name. 

Table 3 

Variable Description 

HOME Specifies the full, absolute path of the 
user’s home directory. 

HOMEDRIVE If HOME is not set1, on Microsoft 
Windows variants this specifies the drive 
letter prefix (e.g., “D:”) of the user’s 
home directory 

HOMEPATH If HOME is not set, on Microsoft Windows 
variants this specifies the absolute path 
name of a user’s home directory within a 
drive (e.g., “/users/default”). 

NNaattiivvee  LLaanngguuaaggee  MMeessssaaggee  CCoonnffiigguurraattiioonn  
FARGOS/VISTA’s Native Language Message support is a superset of several 
standards (e.g., X/Open XPG3/4, Uniforum) related to the internationalization and 
localization of application programs.  The underlying Native Language Message 
library recognizes a large number of environment variables, many of which perform 
identical roles but are accepted in order to comply with various historical schemes 
and incompatible standards.  These are listed below in Table 4. 

                                           
1 The use of HOME is always preferred; it should be set using a command equivalent 
to:  set HOME=%HOMEDRIVE%%HOMEPATH%. 



 

9 

Table 4 

Variable Description 

1. LC_ALL 

2. LC_MESSAGES 

3. LANG 

Specifies the requested locale.  These 
variables are listed in order of priority, 
thus the setting of LC_ALL overrides the 
setting of LANG. 

NLSPATH 

VISTA_NLSPATH2 

Specifies a set of directories that should 
be searched for Native Language 
Message catalogs. 

TEXTDOMAIN Not recommended for use.  Specifies the 
default catalog name. 

TEXTDOMAINDIR Not recommended for use (use NLSPATH 
instead).  Specifies a single directory to 
search for Native Language Message 
catalogs 

The value of NLSPATH is defined to be a colon-separated (“:”) list of directories; 
however, FARGOS/VISTA applications also support semicolon-separated (“;”) path 
names, which are often used on Microsoft Windows-based systems due to the 
inclusion of drive letters, such as “C:”. 

Note:  the FARGOS/VISTA runtime correctly recognizes colon-separated path names 
that make use of path specifications that include drive letters.  The use of semicolon-
separated path elements is thus a matter of taste, not mandatory. 

The directory names in an NLSPATH or VISTA_NLSPATH can make use of the 
following meta-characters, which are substituted with appropriate values at runtime: 

Meta Character Value 

%% % (escaped percent sign) 

%L Locale specification 

%l Language element of locale specification 

%t Territory element of locale specification 

%c Codeset element of locale specification 

%N Catalog (application) name 

%F3 FARGOS/VISTA NLM Catalog name, 
equivalent to “%N-%L.nlmcat”. 

 

When searching for a Native Language Message Catalog, the following directories are 
examined in the order illustrated below: 

1. Those specified by the expansion of VISTA_NLSPATH 
                                           
2 VISTA_NLSPATH is a FARGOS/VISTA-specific variable that has precedence over the 
standard variable NLSPATH. 
3 This is a FARGOS/VISTA extension, which is not defined by any standard.  It is 
perfectly safe when used with VISTA_NLSPATH, but it may not be accepted by other 
applications if it is used in NLSPATH. 



 

10 

2. Those specified by the expansion of NLSPATH 
3. “.” (the current directory) 
4. $HOME/.vista/NLMcatalogs 
5. %HOMEDRIVE%%HOMEPATH%/.vista/NLMcatalogs (if HOME was not set) 
6. $VISTA_ROOT/NLMcatalogs 

Within a directory, three distinct files are sought.  In order, they are: 

1. “%N-%L.nlmcat” (the application’s locale-specific NLM catalog) 
2. “%N-C.nlmcat” (the application’s default NLM catalog, which is in the “C” 

locale) 
3. “%N” (the application’s name is treated as the file name, which permits the 

NLM system to also be used for supporting end-user customizable 
configuration files) 

 

3. Localized Configuration Files 
There are two classes of localized data files that are used by FARGOS/VISTA-based 
applications: 

• license files provided by FARGOS Development, LLC 
• localized configuration data created by a site's administrator. 

A FARGOS/VISTA license file will usually come with instructions as to where it should 
be stored.  Generic issues related to localized data files are discussed below. 

Administrators may need to prepare and distribute user/host/site-specific 
configuration files.  These localized data files normally are named with the suffix 
".vld" (refer the section entitled “Magic Numbers” for specification of the file format's 
magic number). 

The FARGOS/VISTA localization scheme is quite flexible.  A file can be restricted to a 
particular user on a specific host; it can be restricted to a particular user on any host 
within a given domain; it can be restricted to any user on a particular host or any 
user within a particular domain. 

FFAARRGGOOSS//VVIISSTTAA  DDoommaaiinn  KKeeyyss  
One of the more common uses of localized data files involves the exchange of 
FARGOS/VISTA domain key files, which are used to enable the exchange of data 
between two FARGOS/VISTA Object Management Environments or associated 
applications.  The key files perform two purposes: 

1. They provide authentication data for a site. 
2. They help restrict attempted communication by unauthorized third parties. 

When two FARGOS/VISTA Object Management Environments establish a 
communications link, information is exchanged that identifies each end of the link 
and negotiates a variety of parameters, including the session key used to encrypt all 
data that is transmitted.  The following is a high-level explanation of the process. 

All data sent from one end of the link is encrypted using a randomly generated 
session key.  The encryption is further skewed by an initialization vector, which must 
also be known by each side of the link.  Thus, successful decryption of 
communication from one FARGOS/VISTA Object Management Environment process 
to another requires knowledge of both the randomly generated session key and the 
previously agreed-to initialization vector. 



 

11 

Because the session key is randomly generated, it cannot be made available to the 
remote end of a link through some static means, such as the distribution of a file.  
Instead, the value of the session key is transmitted using public key encryption:  the 
local side of the link encrypts the randomly generated session key using its private 
key and the remote end of the link decrypts the session key using the corresponding 
public key. 

Successful decryption of the session key using the relevant public key proves to the 
remote site that it is truly in communication with the local site.  The key issue (pun 
intended) is how each end of a link determines its respective private key/initialization 
vector) and the public key/initialization vector of the other end.  All FARGOS/VISTA 
Object Management Environments support a predefined "public" domain:  a set of 
embedded public/key pairs and a corresponding initialization vector are embedded in 
the runtime object code.  Use of the public domain provides no verifiable 
authentication (because every FARGOS/VISTA Object Management Environment 
contains the keys), so it is primarily useful for anonymous interactions. 

Trust between two peers is enabled using authenticated communication links that are 
associated with an administratively defined logical domain.  The necessary static 
information is maintained in localized data files that are stored on each the peer 
hosts.  Such files are created by the OMEmkKeyFiles utility4, which generates a 
pair of private and public key files.  The private key file contains a randomly 
generated private key and a randomly generated initialization vector; the public key 
file contains the corresponding public key and a copy of the initialization vector. 

The private key file is localized so that it can be accessed on a particular host and it 
is encrypted using an administrator-assigned secret phrase.  This secret phrase must 
be used to access the encrypted data.  The private key file itself should be also 
treated as a secret, which means taking appropriate precautions to keep it from 
being copied by unauthorized users.  Possession of the private key file is not 
sufficient to impersonate a host, since the knowledge of the secret phrase is required 
to decrypt it.  Nor is knowledge of the secret phrase sufficient to impersonate a host:  
the actual public/private key pairs and initialization vectors are randomly generated 
and have no correlation with the secret phrase.  It thus takes possession of both the 
private key file and the secret phrase to enable impersonation of a host. 

The public key file must be shared with peer sites with which one wants to interact.  
If the remote site does not have the local site's public key file, communication will 
not be possible because the remote site will be unable to decrypt any data that is 
sent.  Public key files are themselves localized so that they can only be decrypted on 
hosts within a particular domain; however, a hostile third party could configure their 
own equipment to claim to be a member of said domain.  It is important to 
remember that public files are, by definition, not secret.  Restricting their distribution 
helps prevent unauthorized communication attempts, but the security of the local 
system does not depend on a remote site retaining the secrecy of a public key file. 

4. Optional Configuration 
This section provides additional information that is not required by any 
FARGOS/VISTA installation. 

                                           
4 The OMEmkKeyFiles utility is only present in commercial distributions and its 
export to certain jurisdictions outside the USA is restricted. 



 

12 

Magic Numbers 
The implementation of the file command found on many Unix variants can be 
modified by adding appropriate entries to a local "magic" number file, which is 
normally /etc/magic.  The following entries can be added to recognize 
FARGOS/VISTA-related file formats. 

# FARGOS/VISTA files 
0 string \005\025\013 FARGOS/VISTA License 
>3 byte  x   version %d 
>24 belong 1   using standard encoding 
>24 belong 2   using compressed encoding 
0 string \005\025\053 FARGOS/VISTA Localized Data File 
>3 byte  x   version %d 
>24 belong 1   using standard encoding 
>24 belong 2   using compressed encoding 
0 string o2o   OIL2 Architecture Neutral Format 
>3 byte  x   version %d 

Makefile Rules 
Authors of applications written in OIL2 may find the following make rules useful in 
their Makefiles. 

# Copyright (C) 1999-2001 FARGOS Development, LLC.  All rights reserved. 
 
# *** NOTE *** External variables used 
# OBJ_SUFFIX - typically .o or .obj depending on platform 
# LIB_SUFFIX - typically .a or .lib depending on platform 
# LIB_PREFIX - typically lib or null depending on platform 
# EXE_SUFFIX - typically not defined (or null) or .exe depending on platform 
 
.PRECIOUS: .cpp 
.SUFFIXES: .so .dll .obj .o2o 
 
# C++ compilation rules -> native object 
%.${OBJ_SUFFIX} : %.cpp ; ${CC_PLUSCOMP} ${OPTIMIZE} -D_REENTRANT -
I${VISTA_ROOT}/include ${CPLUSFLAGS} -c $< 
# end C++ rules 
# OIL2 -> C++ 
%.cpp : %.oil ; ${VISTA_ROOT}/${VISTA_UNAME}/oil2 $< 
# OIL2 -> OIL2 Architecture Neutral Format object code 
%.o2o : %.oil ; ${VISTA_ROOT}/${VISTA_UNAME}/oil2_parse -oil2 $< 



 

13 

5. Further Reading 
Further details about FARGOS/VISTA can be found in the following resources: 

FARGOS/VISTA Overview 

FARGOS/VISTA Object Management Environment Programmer's Reference 

FARGOS/VISTA Object Management Environment Classes 

Object Implementation Language 2 Reference 

An Introduction to Programming using OIL2 

FARGOS/VISTA HTTP Server Programmer's Guide 

FARGOS/VISTA Examples 

FARGOS/SolidState HTTP Server Adapter 


	Notice of Rights
	Trademarks
	Abbreviations
	Notice of Liability
	Installing FARGOS/VISTA Distributions
	Installation under Sun Solaris
	Installation under Linux Variants
	Installation under OpenBSD
	Installation under Microsoft Windows
	Microsoft Windows NT Services


	Environment Variables
	
	User-Specific Configuration Files
	Native Language Message Configuration


	Localized Configuration Files
	
	FARGOS/VISTA Domain Keys


	Optional Configuration
	Magic Numbers
	Makefile Rules

	F
	Further Reading

