
Version: 7/6/2001 5:30 PM

FARGOS/VISTA
An Overview

ii

FARGOS/VISTA: An Overview
FARGOS Development, LLC
757 Delano Road
Yorktown Heights, NY 10598
http://www.fargos.net
mailto:support@fargos.net

Copyright 2000-2001 FARGOS Development, LLC

Notice of Rights
All rights reserved. This document may be rendered into whatever form is useful for the
user, including electronic transmission or printing, so long as the content is not altered.

Trademarks
FARGOS/VISTA, FARGOS/SolidState and FARGOS/SolidConnection are trademarks of
FARGOS Development, LLC.

Abbreviations
FARGOS Development, LLC is a Limited Liability Company registered with the State of
New York. It is required to identify itself as such in its name, hence the “, LLC” suffix. For
purposes of readability in this document, the “, LLC” suffix is sometimes dropped. The
phrase “FARGOS Development” always denotes “FARGOS Development, LLC” and is not
intended to suggest any alternate form of organization.

Notice of Liability
Information in this document is distributed on an “As Is” basis, without warranty. While
every precaution has been taken in the preparation of this document, FARGOS
Development, LLC shall not have any liability to any person or entity with respect to any
loss or damage caused or alleged to be caused directly or indirectly by the instructions
contained within this document or by the computer software or hardware products described
in it.

http://www.fargos.net/
mailto:support@fargos.net

iii

Contents
An Overview of FARGOS/VISTA .. 4

A Short History... 4
Cooperative Applications ... 4
Distributed Application Paradigms... 4
Componentization of Applications... 5

The FARGOS/VISTA Object Model .. 6
Independent Development ... 8
Polymorphism and Allomorphism ... 9
Name Spaces and Versioning .. 9
Security ... 10
Method Overloading ... 10
Self-Describing Environment .. 10
Reflection... 10
Dynamically Loaded Code.. 11
Intrinsic Support for Internationalization.. 11

The Power of a Peer-to-Peer Architecture .. 12
Fault-tolerant Web Server ... 12

Further Reading... 13

4

An Overview of FARGOS/VISTA
FARGOS/VISTA1 is a new, next-generation platform intended for the development and
support of massively distributed global applications. It builds upon a decade of experience
with state-of-the-art distributed object-oriented operating systems, and includes numerous
features that exceed the capabilities of other systems.

A Short History
Technologies like Java, CORBA, and message queues are promoted by some organizations as
key technologies, but none of the three dominates the arena of rapid development and/or
deployment of distributed applications. Consequently, any programming organization
responsible for writing and integrating applications that operate within a networked
environment would be well served by investigating the functionality provided by the
FARGOS/VISTA system and comparing it against other available technologies.
Beyond the mere mechanics of providing a technology infrastructure that enables the
creation of transparently distributed applications, FARGOS/VISTA also pays attention to the
development lifecycle: for example, how code is created and reused by multiple, potentially
independent developers; internationalization; deployment of updated or new code into
running systems.

Cooperative Applications
The FARGOS/VISTA infrastructure focuses on the development of distributed applications
that can cooperate with one and another. Such applications can be written independently of
each other and a previously written application can interact with new applications without
being modified or even re-linked. This is a radical departure from conventional technologies
and provides a host of capabilities:
• A FARGOS/VISTA-based application from one vendor can be extended later by code

written by a different vendor without requiring access to the source code of the original
application.

• Applications can be developed by different organizations and interact without requiring
the exchange of header files and the corresponding burden of keeping libraries in sync.

• An application can be upgraded without requiring re-linking and re-deployment of
applications that make use of functionality exported by the enhanced program.

As illustrated above, one feature of the FARGOS/VISTA technology is to enable multiple, yet
independent, developers to implement applications that cooperate without requiring them to
closely coordinate their development and synchronize their deployment activities. This is
powerful functionality directly applicable to most environments, whether they use off-the-
shelf software from multiple vendors or develop their own mission-critical applications in-
house. FARGOS/VISTA provides the infrastructure for these capabilities (and many others)
by utilizing a different application paradigm than that pursued for the past 20 years.

Distributed Application Paradigms
Networks of interconnected machines provide opportunities for new types of applications,
increased reliability, utilization of idle resources, etc. If an application is to take anything
other than limited advantage of such opportunities, it must be aware of the distributed
nature of the environment.

1 FARGOS/VISTA is an acronym for Fantastic And Really Great Operating System / Various
Interconnected Systems with Transparent Access.

5

There are many middleware packages available in today’s market and most implement their
functionality using a Remote Procedure Call (RPC) paradigm. Two examples are the Object
Management Group’s CORBA “standard” and Microsoft’s DCOM. Unfortunately, the RPC
paradigm is, by design, a poor approach for building distributed applications that can
cooperate.
The RPC paradigm makes the execution of a function on a remote machine appear as if it
was a local function call. In simple terms, the RPC paradigm makes everything appear local,
thus the RPC paradigm intentionally hides the distributed nature of an application. This is
seductive, but ultimately very limiting and contributes to the development of fragile systems.
Examples of some problems it creates:
• Programmers need to explicitly identify what functions are to be accessible by remote

processes and implement them as remote procedure calls. This requires correctly
identifying the appropriate interfaces and writing the server-side code. It frequently
involves significant work to maintain state on the remote (server) side of the application.
Design decisions that prove to be incomplete can require significant reengineering of the
application and typically require maintaining old interfaces in a deprecated state. Such
changes in turn contribute to application bloat and place increased burdens on software
maintenance.

• Failures of a remote procedure call due to server or network problems are difficult to
handle correctly, due to the illusion that the function call appears to be local. The
consequence is fragile code that can fail spectacularly in the presence of an overloaded
server or worse problem.

• Among other problems, it forces application programmers to write monolithic
applications in a conventional fashion. The disadvantages of large monolithic programs
are well known and some people hold out hope for using middleware packages as an
infrastructure for building componentized applications.

Componentization of Applications
One trend that is promoted today is the use of components to build applications. Great
claims of increased programmer productivity due to the reuse of previously written
components are often touted. This can indeed be the case, but it assumes that the
components are designed in such a way as to be suitable for reuse by other application
programmers. While feasible, in practice most programmers are not skilled at delivering
reusable code. For those with the necessary skills, many work in environments where the
pressures of dealing with their immediate problems mean that short-term results are valued
more than the optimization of productivity in the long term.
Another claim in favor of componentization of an application is that it creates an opportunity
for increased scalability. An application faces a scaling problem when some finite resource
required by it is exhausted. Such resources might be easily measured and predicted
quantities like the amount of virtual memory or free disk space available on a host. They
can also be resources that are influenced by a variety of factors, such as CPU cycles devoted
to an application or available network bandwidth. There are two broad, complementary
approaches to avoiding scaling problems. The first is to be frugal with the available
resources. By using as little as possible, one can stretch the finite resources farther, allowing
for larger problems sizes than would otherwise be possible. The second approach is to break
the application into distinct pieces and distribute these pieces amongst physically separate
systems. Such an approach can be effective because many of the resources are constrained
by limits imposed by a given physical system (like a host or LAN). It is thus often possible to
nearly double the scarce resource by adding a duplicate of the physical system in question.
The second approach creates its own set of difficulties. When the resource in question being
doubled is physical hosts, there is a problem in that while many resources are doubled,

6

additional CPU cycles and network bandwidth are required to communicate between the
hosts. If any significant communication takes place between hosts, the increased overhead
may stall the application completely. Consider Microsoft's published numbers for DCOM
(rounded to nearest magnitude):

• 3 million calls per second in the same process
• 2000 calls per second between processes on the same machine
• Less than 400 calls per second between process on different machines

A reduction in throughput from over 3 million calls-per-second to less than 400 just by
breaking apart a monolithic application and distributing the pieces on distinct machines is a
very significant performance reduction. This demonstrates that only components of
applications that have very little interaction are suitable for distribution amongst multiple
hosts; otherwise, the inter-machine communication overhead will dominate the workload and
bring the system to a standstill. This very real issue should be at the forefront of any
assertion that breaking a given system into pieces would help make it scale. Doubling the
available CPU resources at the cost of introducing overhead that makes the system run 8000
times slower is not an improvement.
Breaking an application into distinct pieces, scattering them across machines and having
them cooperate in a distributed fashion introduces new problems. These include determining
the location of a given application or isolating the underlying cause of a problem when one of
the applications is not working properly due to a hardware failure or incorrectly configured
machine. It should be obvious that setting up and maintaining security in a distributed
framework is much more difficult than doing the same for a single host.
Thus while componentization of application code is very attractive, components that use an
RPC-based infrastructure rest on awkward and unstable ground.
In contrast to the RPC paradigm, FARGOS/VISTA provides an elegant design paradigm in
which applications are built from the ground up in such a fashion as to enable their
interaction with other applications in a transparently distributed environment. Instead of
having to explicitly decide what functions should be accessible from remote systems, as is the
case with RPC- or message queue-based systems, every item of data and every associated
function is accessible from anywhere in the distributed system2.

The FARGOS/VISTA Object Model
The FARGOS/VISTA runtime environment provides the infrastructure upon which
transparently distributed applications can be built. Like the RPC paradigm,
FARGOS/VISTA-based applications can invoke functions without regard to physical location:
no distinction is made between local or remote. FARGOS/VISTA provides an object-oriented
environment and FARGOS/VISTA-based applications are composed out of objects. It is
reasonable to view these objects as miniature components. The object-oriented nature of the
environment is not unique: this simply means that logically related pieces of data are
represented as objects and the exposed APIs are functions, not the physical layout of the data
in question. That said, there are many degrees of sophistication that can be associated with
an object-oriented environment: the threshold required to use this buzzword is quite low,
thus when comparing models, it is crucial to focus on the features provided and not merely
the declaration of object-orientation.
In the FARGOS/VISTA object model, all objects are instances of a class. A class describes
the data associated with an object and the operations that can be performed on such objects
(these functions are referred to as methods). A class may inherit from other classes. Some

2 Enforcement of access control may prevent a given user from interacting with a specific
object.

7

systems only permit a class to inherit from one other class, but the FARGOS/VISTA object
model supports multiple inheritance. Inheritance can be used to obtain additional
functionality (such as inheriting a class that implements object persistence) or to handle
special case behavior.
FARGOS/VISTA objects interact with each other by sending messages. This results in a
method being run against the destination object as a separate thread of execution. Such fine-
grained parallelism provides unique advantages; however, conventional operating systems
are not able to provide fast enough performance to make this feasible3. The FARGOS/VISTA
runtime environment is able to use native kernel threads, but the FARGOS/VISTA runtime
environment also provides its own ultra-high-performance threading technology that is over
250 times faster than using native kernel threads. The use of native kernel threads provides
increased performance on parallel processors as well as easy integration with legacy code,
but for obvious reasons, the FARGOS/VISTA-specific threads are the mechanism of choice.
Each object in an FARGOS/VISTA-based system is accessible from any host participating in
the distributed system. In contrast to most other middleware systems, the two objects do not
have to reside on hosts that are directly connected. One result of this is that an object
residing on a host in a TCP/IP-only domain can interact with an object residing in an IPX-
only or SNA-only domain. This enables the integration of existing applications that were
based on older networking technologies with those based on newer protocols. Another
important aspect pertains to scaling. Middleware systems that require direct connection
between the servers that support the distributed object environment do not have good
scalability. As an illustration of this point, consider the following characteristics of a
CORBA-compliant product from a well-known vendor:

The vendor in question recommends that each management server handle a maximum of
approximately 200 clients. This surprisingly low limit is imposed by a file descriptor
limit found in many operating systems; however, this does not mean that the server will
be lightly stressed. Indeed, it is recommended that the typical server machine be
configured with a minimum of 64 megabytes of real memory and 128 megabytes of swap
space for virtual memory.
Following conventional recommendations, handling 10,000 clients would require a
minimum of 50 servers. Because routing between management servers is not supported,
if a truly distributed system is required a file descriptor will be used for each inter-server
link, which would bring the number of servers required up to approximately 66.
The graph below demonstrates how the total number of client machines handled can be
increased by adding additional servers, but only up to a point. Not only does the benefit
of adding new servers decrease, but at a certain point it actually reduces the capacity of
the system. The result is that one cannot assert that a fully connected system will
continue to scale by increasing the number of dedicated servers4.

3 Thread creation rates of around 20 per second are typical for kernel-provided threads.
4 The product in question also has another critical deficiency, namely that servers exchange
object registration tables when they connect. In a modest setup, this requires 30 minutes per
server pair. For a network of N servers, there will be ½ N (N - 1) links between server pairs.
With only 5 servers (serving around 1200 clients), this is 10 inter-server links and yields an
expectation of 5 hours to initialize the system. Restart of a server will require 4 links to be
established and would be expected to take about 2 hours. It should be clear from this
example that a given middleware technology that works well in a small prototype
environment may suffer scaling problems that render it useless for actual deployment in
production environments. Unfortunately, this may only be discovered after significant effort
has been invested in developing new applications and their deployment was attempted.

8

Total Clients Supported

0

10000

20000

1 64 12
7

19
0

Server Machines

C
lie

nt

M
ac

hi
ne

s

Total
Clients

The data graphed was for a case that assumed 250 free file descriptors for each server
process (approximately 20% over the suggested limits). In this case, the maximum
number of client machines is 15625 using 125 servers. Note, however, that while some
operating systems support more than 250 free file descriptors, others may support far
less. Unless special care is taken, Windows NT-based applications will end up with
FD_SETSIZE set to 64, and the WaitForMultipleObjects() kernel call is limited to
waiting on at most MAXIMUM_WAIT_OBJECTS objects--which not surprisingly
happens to be 64. In this case, assuming 60 free file descriptors, the maximum client
total is 900 using 30 servers.

In contrast, FARGOS/VISTA can be deployed in such a fashion as to provide near-linear
scalability. The graph below, using the same assumptions as the prior example, illustrates
this:

Total Clients Supported

0
20000
40000
60000

1 66 13
1

19
6

Server Machines

C
lie

nt

M
ac

hi
ne

s

Total
Clients

Beyond its raw performance and scaling advantages over other technologies,
FARGOS/VISTA focuses on the effort expended by programmers to develop new applications
and maintain existing code. Programmer productivity is actually the most important aspect
of FARGOS/VISTA: the intent of FARGOS/VISTA is to make programmers more productive
and permit them to write applications previously beyond their reach. Programmers who
used the predecessor to FARGOS/VISTA consistently obtained 6 to 10-fold improvements in
productivity.

Independent Development
The development of a large application generally involves the efforts of more than one
developer. Conventional technologies require such developers to cooperate closely and keep
their code in sync. The FARGOS/VISTA system is designed to enable the utilization of code

9

written by different developers without requiring the exchange of header files. A developer
can correct or enhance a piece of code, and applications that utilize it do not need to be
recompiled or re-linked. These powerful capabilities enable the creation of non-stop systems
that not only tolerate hardware failures but also permit the replacement of code without
requiring a restart. This can be used by an organization that operates 24 hours-a-day, 7
days-a-week to upgrade existing or introduce new production applications without causing a
service outage.

Polymorphism and Allomorphism
In typical object-oriented systems, inheritance is used to create specialized classes with
generic interfaces. This is called polymorphism: an object can appear to be of more than one
class. Applications can usefully interact with objects by treating them as instances of their
base class, but specialized methods will override the default implementation provided in the
base class. Inheritance is a powerful mechanism; however, some systems only provide
support for single inheritance instead of the more general multiple inheritance. Providing
support for only single inheritance makes it difficult for a developer to provide generic
facilities that can be combined through inheritance. FARGOS/VISTA provides support for
multiple inheritance, thus introducing no artificial restrictions on functionality. In addition
to support for polymorphism, FARGOS/VISTA also supports allomorphism: a class can
provide method interfaces that look like those of another class, but it does not need to inherit
from the look-alike class. Code that expects to interact with objects of the original class can
thus interact with objects of the new class. This capability is very powerful, but rarely found
in other object-oriented technologies.
The elegance of the FARGOS/VISTA paradigm contributes directly to programmer
productivity. It is complemented by the extensive and often unique functionality provided by
the FARGOS/VISTA runtime environment.

Name Spaces and Versioning
FARGOS/VISTA classes are uniquely identified by three attributes:
1) The name space in which the class is defined
2) The name of the class
3) The version ID of the class
A name space is a text string that is used to identify a collection of classes. Its primary
purpose is to provide a mechanism to prevent name collisions between classes created by
independent development organizations. When creation of an object is requested, the name
space of the desired class can be specified to remove any ambiguity. It can also be left
unspecified and in that case, a series of name spaces will be searched to find the indicated
class. This is one way to perform replacement of a class implementation with a locally
enhanced version without requiring access to the original source code.
Each class also has a version ID associated with it. More than one version of a given class
may be simultaneously supported within the FARGOS/VISTA infrastructure. This is a
rarely found feature, but it is really a fundamental requirement for any system supporting
evolving applications and persistent data5. This is an interesting capability for non-

5 If a system does not support multiple versions of a class, changes to the storage layout of a
persistent object are a significant problem. It requires shutting the system down, running an
offline procedure to convert the old saved data to the new layout and then restarting the
system. It is a complicated enough procedure if the data is all on a single server, much less
scattered across many hosts.

10

persistent objects as well: an application can be upgraded by deploying the new versions of
its classes and they will not interfere with versions that are already executing.

Security
FARGOS/VISTA allows the implementation of distributed applications that work in
environments that are not completely trusted. Every FARGOS/VISTA-based object has
access control lists associated with it that indicate who is allowed to invoke a particular
method against the object, so security is an inherent aspect of the environment. While this
imposes a non-zero amount of overhead on every method invocation, the implementation has
been done in such a way as to make the overhead very small and thus make it practical to
provide such fine-grained access control.

Method Overloading
An FARGOS/VISTA class can have more than one implementation of a given method name if
the distinct implementations take different arguments. This capability has long been known
to C++ programmers as overloaded functions. For a given positional argument, a specific
type (like an integer or floating point number) may be required or any type may be
acceptable. It is easy to provide a default implementation by providing a method that will
accept any type of data. The functionality provided by FARGOS/VISTA is thus a
combination of the style provided by C++ and that used in its own implementation.
In addition to supporting multiple implementations of a given method name, the same
method body can be used to implement methods with different names. This is referred to as
an "alias". Many times programmers implement methods that take different arguments, but
contain virtually identical code. The use of an aliased method permits the method body to be
written only once. Writing a piece of code only once has in turn several obvious benefits:
faster development, less opportunity for bugs, easier future maintenance.

Self-Describing Environment
As previously mentioned, FARGOS/VISTA supports the development of applications that
manipulate data whose type is not known at compile time. This is easy to do in
FARGOS/VISTA because all data is tagged and its type can be inquired at runtime. This is
an incredibly powerful capability and it is doubtful that it can be fully appreciated unless one
has had the opportunity to utilize such a system.
FARGOS/VISTA does not just support tagged data, it implements a complete self-describing
environment. Applications can determine what classes are loaded in the environment at
runtime and their characteristics.

Reflection
Reflection is another powerful capability intrinsic to the FARGOS/VISTA runtime
infrastructure. It permits the processing of a method invocation against an object to be
delegated to another object, called a "meta-object". FARGOS/VISTA supports reflection on
both a per-object and a per-class basis. The uses for reflection are limited only by a
programmer's imagination, but some examples include: tracing method invocations against
an object for debugging or profiling purposes, patching a running application, implementing
a routine that can handle an invocation of any method name, etc.
Per-class reflection is useful to enable a single object to handle method invocations against
all objects of a particular class. As an illustration, consider a set of persistent objects whose
storage layout needs to be changed due to deployment of a new, enhanced version of its class.

11

The new and old version of the class are uniquely identified by their version Ids and, as
noted above, FARGOS/VISTA permits multiple versions of a class to be supported
simultaneously. A per-class meta-object can be associated with the old version of the class.
At this point, whenever one of the objects of the old class is accessed, the method invocation
is reflected to the meta-object. The code associated with the meta-object can perform a
procedure to convert the old object's data to conform to the new class format and then invoke
the intercepted method against the newly constructed object. Since the newly created object
is of a different class version, the meta-object will not intercept future method invocations
against the object, so no future overhead is incurred. The net effect is to permit objects to be
updated on demand6.
Capabilities that sound similar to reflection have started to appear in other middleware
technologies (like Microsoft's DCOM). It is worth noting that true reflection requires a self-
describing environment. This necessitates the ability to examine all aspects of a method
invocation (method name, destination object, method arguments, from object, etc.) as well as
to perform arbitrary operations based on the intercepted method invocation.

Dynamically Loaded Code
FARGOS/VISTA-based classes can be dynamically loaded into the environment. They can be
loaded from the local file system or easily sent from another host (one of the benefits of a
transparently distributed environment). FARGOS/VISTA supports a dynamically loaded
architecture-neutral object code format. It also allows the dynamic loading of native object-
code in addition to statically linked code for environments that are sensitive to maximizing
performance.

Intrinsic Support for Internationalization
In this era of globalization, internationalization of applications is an issue for both multi-
national corporations and even small software development organizations.
Internationalization of an application is typically performed by externalizing all of the
language-specific messages and providing a message catalog for each of the languages that
are supported. At run time, the application retrieves relevant message text from an
appropriate catalog based on the locale in which the application runs. This works reasonably
well for applications that are not distributed. It becomes a little more difficult when dealing
with a distributed system. Massive distributed systems of the order supported by
FARGOS/VISTA can be deployed in such a fashion as to span multiple countries. It is
entirely possible for a user in the United States to make use of results produced by servers in
Italy or Germany. The English-speaking user needs his messages in English, even though
the servers executing portions of his application were started under Italian and German
locales. Trivial distributed systems ignore this problem by assuming that the user and the
servers he utilizes share identical locales.
FARGOS/VISTA addresses the problem by treating an internationalized message to be a
special data type with the same importance as an integer, floating point or string. This does
make it very easy for programmers to provide native language support in their applications.
More importantly, the ultimate result is to allow a server, say sitting in Milan, to
simultaneously provide results to users in the United States, France, and Germany in their
respective languages.

6 The actual procedure would go something like the following: 1) the data is extracted from
the old object. 2) a new object of the class version is created using the extracted data. 3) the
old object is deleted. 4) the newly created object is renamed to have the same object Id of the
deleted object.

12

Not only do FARGOS/VISTA Native Language Messages assist individuals that speak
different languages, it provides the capability for application programs to understand these
same messages. This is very useful for systems management-related applications that need
to recognize the meaning of selected messages and automatically take appropriate actions.

The Power of a Peer-to-Peer Architecture
As noted earlier, the prevalent distributed paradigm is that of the remote procedure call, and
many programmers are familiar with the resulting client/server architecture. Some
middleware packages also include support for events, which conceptually can be used in
special cases to achieve a level of functionality equivalent to the method invocation style used
in FARGOS/VISTA. Given these common capabilities, when presented with the
transparently distributed, peer-to-peer architecture created by an FARGOS/VISTA-based
system, it is natural to attempt to map its features into familiar concepts. While this can
assist in understanding, it can cause the opportunity to create new types of applications to be
ignored.
As an illustration of the inherent power of transparently distributed, peer-to-peer
architecture, consider the following application example.

Fault-tolerant Web Server
One advantage of a transparently distributed, peer-to-peer architecture is that mobility is
naturally supported. An external application can change its connection point to the
distributed system, but still interact with objects that previously were local but now are
remote. Likewise, an FARGOS/VISTA-based application can move among servers, perhaps
to escape a server that is to be brought down for maintenance or move closer to the data it is
manipulating.
This can be exploited in numerous ways, but one example is to provide fault-tolerant service
for simple applications. As an example, consider an external application interfacing with an
FARGOS/VISTA-based infrastructure. If the host running the FARGOS/VISTA process fails,
the external application can connect to an alternate FARGOS/VISTA process and continue
operation. Of course, objects hosted by the failed server would be inaccessible unless they
were replicated, so replication of some form is important for applications intending to be
fault-tolerant.
As an illustration, consider a FARGOS/VISTA-based implementation of a fault-tolerant web
server (see the FARGOS/SolidState HTTP Server Adapter User's Guide for details). Many,
but not all, implementations of web-based "shopping carts" can tolerate the crash of a user's
web browser. One way this is done is by storing a cookie on the user's machine and
subsequently retrieving it to obtain information about the user's pending transaction. The
cookie thus maintains on the user's machine the small amount of state that is needed to
reconnect the user to the transaction in progress. As anyone who has had a browser crash in
the middle of making a purchase from a web site can attest, this can save a lot of frustration
on the part of a purchaser. However, it does not help the user when the vendor's web server
or link to the Internet fails.
Ideally, a vendor serious about non-stop operation has multiple servers at physically distinct
locations. Failure of a given web server would normally cause the loss of all transactions
that it had in progress, but with an FARGOS/VISTA-based infrastructure supporting the
backend, a failed request from the user could be reissued against an operational server7.

7 Accessing an alternate operational server is a non-trivial issue. HTML forms send their
data to the URL specified in the declaration of the form. Resubmitting the form will work

13

Consequently, instead of a major service outage causing a user's entire purchase to be lost, at
most the user is inconvenienced by having to retype a few fields on a form.

Further Reading
Further details regarding the FARGOS/VISTA-affiliated suite of technologies can be found in
the following resources:
FARGOS/VISTA Installation Guide

FARGOS/VISTA Object Management Environment Programmer's Reference

FARGOS/VISTA Object Management Environment Classes
Object Implementation Language 2 Reference

An Introduction to Programming using OIL2

FARGOS/VISTA HTTP Server Programmer's Guide

FARGOS/VISTA Examples

FARGOS/SolidState HTTP Server Adapter

with sites that use a network-level redirector, assuming the redirector remains operational.
As a fallback, the HTML page can include links to alternate sites: a successful connect to an
alternate site would result in a receipt of a blank form.

	Notice of Rights
	Trademarks
	Abbreviations
	Notice of Liability
	An Overview of FARGOS/VISTA
	A Short History
	Cooperative Applications
	Distributed Application Paradigms
	Componentization of Applications

	The FARGOS/VISTA Object Model
	Independent Development
	Polymorphism and Allomorphism
	Name Spaces and Versioning
	Security
	Method Overloading
	Self-Describing Environment
	Reflection
	Dynamically Loaded Code
	Intrinsic Support for Internationalization

	The Power of a Peer-to-Peer Architecture
	Fault-tolerant Web Server

	Further Reading

