
.

.

http://www.fargos.net

The attached paper, "Concurrent Network Management with a
Distributed Management Tool", was written some time ago.
Some of the information is as relevant and novel today as it
was when published; however, one particular set of information
disclosed by the paper has been rendered inaccurate due to the
passage of time: none of the authors retained the email and
postal addresses listed in the Author Information section
provided after the paper's conclusions.

Unfortunately, Rob Lehman passed away in June of 2005.

To compensate for this obsolete information, the original
content has been overlaid with a strikethrough and current
email addresses appear near the margins. No other alterations
to the content have been made.

More than merely state of the art…

Concurrent Network Management with a
Distributed Management Tool

R. Lehman, G. Carpenter, & N. Hien –IBM T. J. Watson Research Center

ABSTRACT

As distributed computing has become more prevalent, the need to effectively monitor
and manage computer networks has grown in importance. In the the TCP/IP world, this has
meant monitoring routers, gateways, hubs and other devices using SNMP and other protocols.
However, network management stations have tended to be single-use, turn-key applications
that lack scalability. In addition, monitoring and measurement have extended beyond the
level of routers and gateways to end-user workstations where system administrators are using
SNMP to keep track of traditional system management functions using the existing network
management framework.

Most existing monitoring and management tools do not scale when the monitored
network may include hundreds of routers and thousands of workstations. For large, complex
networks, it is impractical to have a central monitoring and data collection point that
generates all management queries, stores results, and processes alerts and traps.

To monitor and manage the TCP/IP network at the IBM Thomas J. Watson Research
Center, we are currently using the DRAGONS1 Data Engine, a distributed, object-oriented,
run-time environment which supports multithreaded tasks. In this paper, we show how the
latencies in polling and alert notification, which can occur in large networks with a central
management station, can be reduced by employing multiple Data Engines on multiple hosts
to perform management tasks simultaneously. While the DRAGONS Data Engine is a
general purpose, run-time environment, it is particularly well-suited to network monitoring,
since the problem of polling a large network can be decomposed into small, light-weight
queries which map onto the Data Engine’s multithreaded environment quite well.

Introduction

The efficient monitoring and management of
the components that comprise networks is obviously
an important function in any distributed computing
environment. In general, if the network fails, the
computing environment is rendered useless. As net-
works have grown in size and importance, network
management systems have become critical pieces of
software. Unfortunately, network management sys-
tems have tended to be single-use, turn-key applica-
tions that lack both the flexibility and scalability to
deal with situations where the monitored network
may include hundreds of routers and thousands of
workstations. For such complex networks, there
comes a point where it is impractical, if not impossi-
ble, to have a central monitoring and data collection
point that generates all management queries, stores
results, and processes alerts and traps.

One solution to the scaling problem is to distri-
bute the management tasks among different
processes in the existing distributed computing
environment. This can be attractive if an infrastruc-
ture exists that facilitates the development of

1DRAGONS is an acronym for Distributed Reliable
Architecture Governing Over Networks & Systems

distributed applications. The DRAGONS Data
Engine, developed at IBM Research, provides such
an infrastructure and this is the approach we have
taken at the IBM T. J. Watson Research Center.

The IBM T. J. Watson Research Center Network

The TCP/IP network at the IBM T.J. Watson
Research Center extends to eleven buildings at five
sites in Westchester County, New York. The sites
are interconnected by either leased T1 lines or fiber.
There are over 3500 active TCP/IP systems (AIX,
SunOS, DOS, OS/2, VM and MVS) spread across
the sites, interconnected by over 20 IP routers. The
LAN topology includes token ring, ethernet, and
FDDI networks. Besides the local networking
infrastructure, links to other sites in North America,
South America, Europe and Asia are also monitored.

In addition to the geographically distributed
devices comprising the IP networking infrastructure,
a large number of local compute- and file servers are
monitored and their respective owners are notified
(either in real-time or via nightly reports) of outages
associated with those systems.

Unfortunately, as more and more routers,
workstations and servers were added to the set of
devices to be monitored, our existing monitoring
methodology did not scale satisfactorily. The

1992 LISA VI – October 19-23, 1992 – Long Beach, CA 235

Concurrent Network Management with a Distributed Management Tool Lehman, Carpenter, & Hien

polling cycle latency (the amount of time it takes to
probe and verify the status of each monitored dev-
ice) was increasing to such an extent that it was
becoming infeasible to notify system and network
administrators in real-time of failures of important
components.

To reduce the polling cycle latency time, we
began to use the DRAGONS Data Engine to perform
network monitoring and management. It allows us
to have a coherent management system that enables
the transparent distribution of the workload among a
number of systems in the network. However, since
our experience with a newly deployed distributed
tool like the Data Engine is limited, it was not obvi-
ous what was the most efficient workload mix
(number of Data Engines and number of threads per
host) given our networking infrastructure.

Short Overview of the DRAGONS Data Engine

While the focus of this paper is not on the
DRAGONS Data Engine, a short, high-level over-
view of the environment is useful.

The DRAGONS Data Engine is a distributed,
multi-threaded, object-oriented, application develop-
ment environment. The Data Engine core provides
three fundamental abstractions to applications:
classes, objects, and threads.

Classes provide a means of organizing data and
associated operations in a well-defined fashion. A
Data Engine class definition defines the instance
variables for each object of a class as well as the
methods defined for objects of the class. Methods
are similar to functions defined on a specific data
type: they are reentrant code bodies that are to be
executed as a thread. In the object model defined by
the Data Engine, methods are the only external inter-
face to an object. The DRAGONS Data Engine sup-
ports multiple inheritance.

An object has several characteristics: it has a
unique name (its object ID), it is a member of a
class, and it has a state. The state of an object is
determined by the values of its instance variables.

The underlying architecture providing the Data
Engine run-time environment implements tagged
variables that identify the type of variables to the
run-time environment. This information is heavily
exploited by the free storage reclamation mechan-
isms and often by applications. Several primitive
types are directly supported. These include abstrac-
tions for integers, floating points, octet strings, object
IDs and native language messages (used to directly
support internationalization and locally customizable
messages). Composite types such as sparse arrays,
associative arrays and sets are also directly sup-
ported by the run-time environment. All data can be
freely passed between heterogeneous machine archi-
tectures.

Method invocations manipulate an object’s
state. The Data Engine run-time environment
creates a new thread for each method invocation.
While this may initially appear to be prohibitively
expensive, overhead has been kept low and future
optimizations may improve performance even more.
Using a simple RPC benchmark that is intended to
measure overhead of the environment, on an IBM
RISC System/6000 Model 560, a Data Engine can
process over 2600 method invocations per second
and more than 3900 context switches per second.
These numbers correspond to over 1300 threads
created per second (not all method invocations result
in new threads being created because either the
method body was null or the invocation was
addressed to a thread) and over 650 RPC-style object
interactions per second.

Exploiting the Distributed Capabilities of a DRA-
GONS Data Engine

A basic DRAGONS Data Engine with no local
customization includes built-in classes ranging from
fundamental, low-level classes that provide access to
primitive operating system facilities like timers, files,
TCP and UDP sockets to those that implement appli-
cation support services like interfaces to SNMP
agents, a notification service that can display mes-
sages on a user’s display, send e-mail or drive a
pager system, a plotting program to display graphs
on a user’s terminal or a job scheduler.

DRAGONS Data Engines can be operated as
standalone systems; however, by exploiting their
support for transparently distributed operation,
several interesting possibilities become available.
These include utilizing multiple CPUs to process a
job, and fault-tolerant operation. The focus of this
paper is on exploring the use of multiple CPUs.

The JobController is an example of a Data
Engine class that we developed. An object of this
class can be instantiated to provide a distributed
scheduler function for a job. When the object is
created, the maximum number of threads to be
created on a particular host for the job is specified,
along with the maximum number of hosts that can
participate in the computation. If fewer hosts are
available than the number specified, the number
available is used. By using such an object, an appli-
cation can be written so that it works when running
on a single CPU, but it can automatically take
advantage of additional processors when they are
made available. The complete implementation of
the JobController class, incidentally, is not a compli-
cated piece of code.

The JobController class is used by another sam-
ple Data Engine application that polls networks of
SNMP hosts. The complete source code for this
application appears in Appendix A. A slightly
modified version was used to obtain the timing
results reported in this paper.

236 1992 LISA VI – October 19-23, 1992 – Long Beach, CA

Lehman, Carpenter, & Hien Concurrent Network Management with a Distributed Management Tool

Optimal Distribution of the Polling Workload

While the network management tasks may be
distributed over multiple Data Engines, less than
optimal performance will be realized unless the
scheduling is tuned. This involves determining the
number of threads that a given Data Engine should
devote to a particular management job, as well as
the optimal number of CPUs to be used. Our initial
premises were:
� As the latency in the network increases, it is

more useful to have increasing numbers of
threads that can perform computation while
waiting for slow network responses.

� Conversely, as the latency in the network
drops, it is more appropriate to have decreas-
ing numbers of threads.

� As the amount of computation required
increases, it is more appropriate to decrease
the number of threads. As an extreme case, a
program that does nothing but computation
(no I/O) will run fastest on a dedicated
machine which does no timesharing.

� Conversely, if the jobs perform large amounts
of I/O, then having more threads allows for
the otherwise wasted processor idle time to be
used.

With respect to the optimal number of Data
Engines, we worked from the following premises:
� A speed-up would only be realized when the

unit of work to be distributed was greater than
the effort involved in scheduling the work to
be done on a remote CPU.

� To achieve as close to a linear speedup as
possible for each CPU added to the processor
pool, the unit of work to be distributed would
have to be constructed in such as fashion as to
minimize the amount of interaction with the
master object responsible for the overall com-
pletion of the job.

Experimental Results in a Local Area Network

To determine the best mix of Data Engines and
threads per active Data Engine, a set of experiments
was developed to measure polling cycle times while
varying the numbers of Data Engines and threads-
per-host. This was a simple experiment to setup
since the JobController class within the Data Engine
performs scheduling of tasks across multiple Data
Engines, and varying the number of Data Engines
and threads is accomplished without requiring
changes or recompilation of the measurement code.
We identify the Data Engine running the scheduler
as the master Data Engine and any extra Data
Engines are called slaves.

As mentioned earlier, the IBM T. J. Watson
Research Center complex has IP connectivity to
other sites throughout the world, and links to these
sites are monitored; however, the target topology

measured in the first experiment is a subset intended
to be representative of a LAN (vs. a WAN) environ-
ment. The subset used for the experiment is an
"extended" LAN environment, in which the majority
of measured machines are less than three hops away.
Only a small fraction of the monitored hosts are
reached by a "slow" (T1) serial link. The average
round trip time (as measured by ping) between the
workstations running the Data Engine and the moni-
tored machines is approximately 15 ms.

A total of 238 hosts were measured, some of
which were IP routers with multiple interfaces where
each interface on the router was probed on each pass
by retrieving relevant MIB variables (see the previ-
ously presented source code for details). The major-
ity of the hosts (201 out of the 238) were simply
tested by sending an ICMP ECHO request. To poll
the 238 hosts, a total of 548 request/response
interactions were performed.

The methodology for the experiment was sim-
ple: a number of trials were performed, increasing
the number of threads per host from one to 30
threads. At each threads-per-host level, trials were
performed with an increasing number of processors
in the processor pool. Processor pool sizes of one,
two and four processors were used. The experimen-
tal runs were performed over a number of nights to
normalize for bursts of traffic, which in the target
environment are less numerous outside of normal
working hours, and the average time for each
threads-per-Data Engine/processor total combination
was plotted. Approximately 100 trials were per-
formed for each data point.

In the best case scenario (four Data Engines
each running with seven threads), the polling cycle
time was approximately 30 seconds. Given that 238
hosts were polled, this means that the average time
need to poll each host in this configuration was 0.13
second. The system was processing a little over 18
request/response interactions per second with the
monitored devices. This contrasts to the worst-case
performance measured (one thread running on a sin-
gle Data Engine), in which the average polling cycle
time was 104 seconds, yielding a cost of 0.43 second
per host. At this rate, the system was processing a
little over 5 request/response interactions per second
with the monitored devices.

The results of these experiments can be seen in
Figure 1. The benefit of multithreading in this appli-
cation is obvious. A single thread running on a sin-
gle host takes nearly twice as long to complete the
polling cycle as two threads running on a single
Data Engine. Obviously, the interesting question is:
When does adding Data Engines, and increasing the
number of threads per host, stop improving and start
degarding polling cycle time performance?

It is apparent that 15 simultaneous threads per
host constitute an effective upperbound, after which

1992 LISA VI – October 19-23, 1992 – Long Beach, CA 237

Concurrent Network Management with a Distributed Management Tool Lehman, Carpenter, & Hien

performance suffers. The value of this upperbound
is due, in part, to the limited number of parameters
altered in this experiment. As a consequence, the
job scheduler allocates the same amount of work for
the master CPU as it does for slave CPUs. This
creates contention within the master Data Engine
because the dequeued work units compete for
timeslices along with the distributed scheduling
functions.

30

40

50

60

70

80

90

100

110

0 5 10 15 20 25 30

P
ol

li
ng

 T
im

e
(i

n
se

co
nd

s)

Threads Per Host

"1-DataEngine"
"2-DataEngines"
"4-DataEngines"

Figure 1: Polling times

In this trial, a single Data Engine does not per-
form as well as a pool of two or four Data Engines,
but the difference between two and four Data
Engines is less clear. The graphs illustrate that the
actual differences in polling cycle latencies with
varying numbers of Data Engines are small, and are
only unreasonably large with one or two threads per
host. This can explained by the fact that in the tar-
get topology, the vast majority of the distributed
work units do a trivial amount of work (they merely
generate an ICMP ECHO request), and thus the cost
of actually sending a task to a remote Data Engine is
essentially the same as processing it locally. If the
work units delegated to slave CPUs were more
computationally-intensive, then we would expect to
see larger differences.

To prove this premise, another set of trials was
performed using a set of topology data that con-
tained only SNMP-based devices. The results of
these trials are shown in Figure 2. The percent
reduction in per-host processing time was compared
between the original topology and the SNMP-only
topology. Using 4 CPUs instead of only one pro-
vided a 14% decrease in runtime with the original
topology, and a 60% decrease in runtime with the
SNMP-only topology. These results support the
premise.

In general, it appears that for the original topol-
ogy of monitored devices, the optimal number of
threads-per-processor seems to be between seven and
ten. While the use of additional Data Engines does
yield better performance, the improvement is not
sufficiently large to motivate the use of multiple
Data Engines purely for the sake of reducing polling
cycle latencies in this particular network. This lack
of significant improvement is due to the fact that the
topology in question contains an inordinate number

of devices which are probed using merely ICMP
ECHO requests. When the unit of work to be distri-
buted is more computationally-intensive, the value of
using additional Data Engines becomes more
apparent.

40

60

80

100

120

140

160

180

0 5 10 15 20 25 30

P
ol

li
ng

 T
im

e
(i

n
se

co
nd

s)

Threads Per Host

"1-DataEngine"
"2-DataEngines"
"4-DataEngines"

Figure 2: Polling times for SNMP Devices

As noted earlier, performance begins to degrade
after about 15 threads per host simply because the
master Data Engine becomes CPU-bound. The goal
is to create a Data Engine configuration where we
have just-in-time monitoring: each Data Engine
should run as close to capacity as possible. Multi-
threading is used to permit a Data Engine to spend
time generating queries while waiting for replies to
previous queries, and in an ideal configuration, the
generation of new queries would end just as replies
to previous queries were being returned. The prob-
lem exposed by these experimental results is that the
master Data Engine becomes a a bottleneck because
the distributed scheduler loads the master Data
Engine with the same number of work units as the
slaves. Better performance in the multi-user case
might be achieved by increasing the number of work
units offloaded to the slaves and decreasing the
number of work units assigned to the master Data
Engine.

To gain some insight into the effect of the
default equal bias-scheduling policy, a third set of
trials was performed with the scheduler instructed to
avoid delegating any work units to the master Data
Engine. In such a scenario, the master Data Engine
is responsible only for scheduling and the slaves are
responsible for actually making progress on the job.
The results obtained demonstrated that the mechan-
ics of distributing work units among multiple hosts
becomes the bottleneck.

A consistent lower bound was observed, regard-
less of the number of hosts made available, indicat-
ing that the master Data Engine was 100% saturated
and the slave CPUs were processing work as quickly
as it could be delegated. As a result, we have deter-
mined that to further improve performance, we will
need to invest more effort in the implementation of
the JobController task. Two new approaches present
themselves. One is to attempt to reduce the number
of method invocations per monitored device that
must cross host boundaries. The current total is four

238 1992 LISA VI – October 19-23, 1992 – Long Beach, CA

Lehman, Carpenter, & Hien Concurrent Network Management with a Distributed Management Tool

and it should be straightforward to reduce this to two
method invocations. The second approach, that is
not mutually exclusive with the first, is to attempt to
distribute the scheduling function itself. This is not
as straightforward as a static (pre-calculated) distri-
bution of work units that does not take into account
effects introduced by lost packets and unresponsive
hosts.

Experimental Results in a Wide Area Network

The results obtained from a LAN environment
with low network latency were in line with our
expectations, but the effect of multiple DRAGONS
Data Engines was not dramatic enough to compel
their use. We had run trials to confirm that multiple
Data Engines had a greater effect when the distri-
buted work units were more computationally-
intensive, but we felt it would be useful to explore
the performance of Data Engines in a wide area (T1
and T3 based) TCP/IP network backbone.

This set of trials was conducted on the ANSnet
backbone network. The characteristics of this net-
work are different from the Watson LAN environ-
ment since it is composed primarily of serial links.
In addition, the monitored devices are generally
further away in terms of numbers of hops. As the
number of hops increases, a corresponding increase
in round-trip times is measurable. The average
round trip time between the measurement points and
monitored hosts in this network is 52 ms, almost 3.5
times longer than in the Watson IP LAN.

The same code and experimental methodology
was used for this target environment with two
modifications: a maximum of two Data Engines
were used, thus eliminating the case of four proces-
sors in the processor pool which was tested against
the Watson Research Center LAN; and the proces-
sors were slower. The results are shown in Figure 3.

50

60

70

80

90

100

110

120

130

0 5 10 15 20 25 30

P
ol

li
ng

 T
im

e
(i

n
se

co
nd

s)

Threads Per Host

"1-DataEngine"
"2-DataEngines"

Figure 3: Polling times with two engines

In this environment, the addition of a second
Data Engine had an obvious effect on the polling
cycle time. Between 10 and 20 threads, the second
Data Engine reduced the polling cycle time by 10
seconds. In the best case configuration (two Data
Engines each running six threads) the average pol-
ling cycle time was about 60 seconds. For a total of

98 monitored hosts, the average polling time per
host was 0.61 second. This contrasted with the
worst case scenario (one thread running on one host)
where the average polling cycle time was 129
seconds, or 1.31 seconds per host.

In both the one and two Data Engine cases,
performance began to degrade noticeably at about 20
threads per host. Again, the bottleneck of the distri-
bution of work units limited throughput.

Comparing the LAN and WAN results

In the ANSnet backbone, the probability of
packet loss is greater than that of the Watson LAN.
We see the benefit of using more than one Data
Engine to compensate for the loss of throughput
when a thread is held up waiting for a retransmission
to take place. In the single processor case, a packet
loss event temporarily drops the system back to
making progress with T - 1 threads, whereas in the
two processor case 2 * T - 1 threads remain active.

Better performance is achieved with a fewer
number of threads in the case of the ANSnet back-
bone as contrasted with the Watson LAN. This is as
expected: there are no trivial units of work being
distributed because all of the hosts being polled are
SNMP-based. Since the computation involved in
dumping the tables of a router is greater than in gen-
erating an ICMP ECHO request, fewer units of work
are required to saturate a given processor.

Summary and Future Directions

� The use of multi-threading is a very effective
technique for reducing polling latencies.

� The use of multiple Data Engines also contri-
butes to a reduction in polling latencies.

� Multiple Data Engines are more effective
when the unit of work to be distributed is
computationally-intensive; otherwise, the
effort involved in delegating the work to a
remote processor far outweighs the savings
gained by offloading the work.

� Our simplistic distributed scheduling applica-
tion has become a bottleneck for increased
performance.

The issue of efficient workload distribution
needs to be addressed with several avenues of
exploration not discussed in this paper.
� The mechanism that starts and controls work

units on remote hosts can be improved. This
currently involves 4 method invocations which
must cross host boundaries.

� An alternative approach to the current
dynamic scheduler is to partition the topology
database into fixed set of hosts and delegate
these to slave CPUs. The slave CPUs would
send one message back to the master inform-
ing it of the status information they had col-
lected. On the negative side, such a static

1992 LISA VI – October 19-23, 1992 – Long Beach, CA 239

Concurrent Network Management with a Distributed Management Tool Lehman, Carpenter, & Hien

scheduling approach makes it more difficult to
add or remove CPUs from the processor pool
while the job is in progress.

� Data Engines already understand the concept
of delegating requests for certain networks or
hosts to authoritative Data Engines. This is
used, for example, to automatically route
requests for external networks through secure
IP gateways, enabling transparent SNMP
access access to external networks. It can
also be used in a wide area network environ-
ment to route processing of requests closer to
their ultimate destination, thus eliminating the
latency involved in repeated interactions with
a very remote site.

Availability

DRAGONS software can be licensed for the
IBM RISC System/6000 and Sun (SPARC-based)
platforms. Inquiries can be sent to
dragons@watson.ibm.com or the authors.

Author Information

Robert Lehman is a Staff Programmer in the
Watson Networking Systems group at IBM
Research. He is responsible for management and

monitoring tools for the Watson IP network. He can
be reached via US Mail at IBM T. J. Watson
Research Center, PO Box 704, Yorktown Heights,
NY 10598, and via networked electronic mail at
rlehman@watson.ibm.com.

Geoffrey C. Carpenter is an Advisory Program-
mer at IBM Research. He works in the Advanced
Information Technology Group (Department of Com-
puting Systems) and is the author of XGMON, an
SNMP manager for TCP/IP networks, and is the key
developer of DRAGONS. He can be reached via US
Mail at IBM T. J. Watson Research Center, PO Box
218, Yorktown Heights, NY 10598, and via elec-
tronic mail at gcc@watson.ibm.com.

Nguyen C. Hien is with IBM Research,
presently the Manager of Automation Systems in the
Advanced Information Technology Group (Depart-
ment of Computing Systems). He has development
responsibility for Systems and Network Management
tools, in particular XGMON, an SNMP manager for
TCP/IP networks, and DRAGONS, an object-
oriented environment for distributed applications.
He can be reached via US Mail at IBM T. J. Watson
Research Center, PO Box 218, Yorktown Heights,
NY 10598, and via electronic mail at
hien@watson.ibm.com.

Appendix A: Polling Code

include "DEinterfaces.oog_h"
include "DEtype_util.oog_h"

enum states {
IN_PROGRESS, COMPLETED, NO_RESPONSE, NO_SNMP_RESPONSE

};

class SNMP_PollNetwork {
oid controller;
int startTime;
int jobsCreated;
int jobsDone;
int tc, hc;
array(string) community;
array(int) addresses;
set(oid) hosts;

} inherits from Object;

SNMP_PollNetwork:create(int threadCount, int hostCount)
{

int t, h;

t = 10; h = 1;

if (argc >= 1) t = threadCount;
if (argc == 2) h = hostCount;

tc = t; hc = h;

send "schedule"(tc, hc) to thisObject from nil;
}

SNMP_PollNetwork:schedule(int threadCount, int hostCount)
{

240 1992 LISA VI – October 19-23, 1992 – Long Beach, CA

Geoffrey C Carpenter

Geoffrey C Carpenter

Geoffrey C Carpenter

Geoffrey C Carpenter

Geoffrey C Carpenter
gcc@fargos.net

Geoffrey C Carpenter
hien@fargos.net

Geoffrey C Carpenter

Geoffrey C Carpenter

Geoffrey C Carpenter

Geoffrey C Carpenter

Geoffrey C Carpenter

Geoffrey C Carpenter

Geoffrey C Carpenter

Geoffrey C Carpenter

Lehman, Carpenter, & Hien Concurrent Network Management with a Distributed Management Tool

int i;
oid host;

write_cout("Starting to schedule , t = ", tc, " h = ", hc, "\n");

if (controller == nil)
controller = send "createObject"("JobController", tc, hc)

to RootObject;
if (hosts == nil)

hosts = send "allInstances"("SNMPhostInfo") to RootObject;

startTime = localRelativeTime();

i = 0;
for host in hosts {

i = i + 1;
if (community[i] == nil)

community[i] = send "getReadCommunity" to host;
if (addresses[i] == nil)

addresses[i] = send "getAddresses" to host;
send "queueJob"("SNMP_PollHost", thisObject, host,

community[i], addresses[i]) to controller;
jobsCreated += 1;

}
}

SNMP_PollNetwork:delete()
{

send "doneWithJob" to controller;
}

SNMP_PollNetwork:doneWithHost(oid obj, int success)
{

int endTime;

jobsDone += 1;
if (jobsDone == jobsCreated) { // all done...

endTime = localRelativeTime();
write_cout("All ", jobsDone, " hosts polled in ",

endTime - startTime, " seconds!\n");
jobsDone = 0;
jobsCreated = 0;
send "schedule"(tc, hc) to thisObject from nil;

}
}

// poll a host
class SNMP_PollHost {
} inherits from Object;

// Some constants here for performance rather than looking them up...
const sysUpTimeObjID = "1.3.6.1.2.1.1.3.0";
const ifNumberObjID = "1.3.6.1.2.1.2.1.0";
const ifTypeObjID = "1.3.6.1.2.1.2.2.1.3.";
const ifOperStatusObjID = "1.3.6.1.2.1.2.2.1.8.";
const ifInUcastPktsObjID = "1.3.6.1.2.1.2.2.1.11.";
const ipAdEntAddrObjID = "1.3.6.1.2.1.4.20.1.1";
const ipAdEntIfIndexObjID = "1.3.6.1.2.1.4.20.1.2";
const ipAdEntNetMaskObjID = "1.3.6.1.2.1.4.20.1.3";
const ipAdEntBcastAddrObjID = "1.3.6.1.2.1.4.20.1.4";
const ipRouteIfIndexObjID = "1.3.6.1.2.1.4.21.1.2";
const ipRouteNextHopObjID = "1.3.6.1.2.1.4.21.1.7";
const ipNetToMediaNetAddressObjID = "1.3.6.1.2.1.4.22.1.3";

1992 LISA VI – October 19-23, 1992 – Long Beach, CA 241

Concurrent Network Management with a Distributed Management Tool Lehman, Carpenter, & Hien

const MAX_VARS_PER_REQUEST = 5;

SNMP_PollHost:create(oid master, oid hostInfo, string community,
array(any) addresses)

{
string hostAddress;
string objID, ifNum;
int i, addr, end_block, count;
oid mibDirectory, sqeInterface;
int ok, rtt;

set(oid) obj_set;
set(any) result_set;
array(any) result;
array(int) addrTable;
array(int) addrIndex;
int addrCount;
string haltKey;
int haltKeyLength;

obj_set = send "allInstances"("SNMP_QueryEngineInterface")
to RootObject;

for sqeInterface in obj_set break;
if (sqeInterface == nil) {

write_cout("No SNMP Query Engine Interface on this host\n");
exit;

}
obj_set = send "allInstances"("SNMP_MIB_Directory") to RootObject;

for mibDirectory in obj_set break;
if (mibDirectory == nil) {

write_cout("No SNMP Query Engine Interface on this host\n");
exit;

}
//
// First, find interface that responds to SNMP
//
i = 0;
addr = addresses[i];
ok = 1;
while (ok) {

hostAddress = dottedAddress(addr);
if (community == "PINGONLY") {

rtt = send "pingHost"(addr) to sqeInterface;
if (rtt != -1) { // no SNMP response, but up

send "doneWithHost"(hostInfo, COMPLETED)
to master;

} else {
send "doneWithHost"(hostInfo, NO_RESPONSE)

to master;
}
exit;

}
result_set = send "getMIBvalue"(addr, community,

sysUpTimeObjID) to sqeInterface;

if (result_set != nil) ok = 0;
if (ok == 1) { // no SNMP response...

rtt = send "pingHost"(addr) to sqeInterface;
if (rtt != -1) { // no SNMP response, but up

send "doneWithHost"(hostInfo, NO_SNMP_RESPONSE)
to master;

242 1992 LISA VI – October 19-23, 1992 – Long Beach, CA

Lehman, Carpenter, & Hien Concurrent Network Management with a Distributed Management Tool

exit;
}
i += 1;
addr = addresses[i];
if (addr == nil) ok = 0;

}
}
if (addr == nil) { // complete failure!

send "doneWithHost"(hostInfo, NO_RESPONSE) to master;
exit;

}
hostAddress = dottedAddress(addr);
//
// Second, dump IP address table for ifIndex->IP address
// mapping for this host.
//
obj_set = emptySet;
obj_set += ipAdEntAddrObjID;
obj_set += ipAdEntIfIndexObjID;
ok = 1;
haltKey = ipAdEntAddrObjID + ".";
haltKeyLength = length(haltKey);
while (ok) {

result_set = send "getNextMIBvalue"(addr, community,
obj_set) to sqeInterface;

if (result_set == nil) {
rtt = send "pingHost"(addr) to sqeInterface;

if (rtt != -1) { // no SNMP response, but
// up

send "doneWithHost"(hostInfo, NO_SNMP_RESPONSE)
to master;

exit;
}
send "doneWithHost"(hostInfo, NO_RESPONSE) to master;
exit;

}
i = 0;
obj_set = emptySet;
ok = 0; // only successfully query disproves

// this...
for result in result_set {

objID = result[0];
obj_set += objID;
if (i == 0) { // ipAdEntAddr

objID = midstr(objID, 0, haltKeyLength);
if (objID == haltKey) { // still in table

ok = 1;
addrTable[addrCount] = result[2];

}
} else if (i == 1) { // ipAdEntIfIndex

if (ok == 1) { // still in table
addrIndex[addrCount] = result[2];

}
}
i += 1;

}
if (ok == 1) addrCount += 1;

}
//

1992 LISA VI – October 19-23, 1992 – Long Beach, CA 243

Concurrent Network Management with a Distributed Management Tool Lehman, Carpenter, & Hien

// Third, dump interface table: get interface status and
// packet count.
//
count = 0;
while (count < addrCount) {

end_block = count + MAX_VARS_PER_REQUEST;
if (end_block > addrCount) end_block = addrCount;
obj_set = emptySet;
// ask for interface type, status for each interface
for (i = count ; i < end_block; i += 1) {

ifNum = to_string(addrIndex[i]);
obj_set += ifOperStatusObjID + ifNum;
obj_set += ifInUcastPktsObjID + ifNum;

}
// we don’t actually care what the results are
// here...
send "getMIBvalue"(addr, community,

obj_set) to sqeInterface from nil;
count = end_block; // next block of

// MAX_VARS_PER_REQUEST
}
send "doneWithHost"(hostInfo, COMPLETED) to master;

}

SNMP_PollHost:delete()
{
}

244 1992 LISA VI – October 19-23, 1992 – Long Beach, CA

