
1 of 5

Byzantine Fault-Tolerant HTTP Services using FARGOS/VISTA
Geoffrey C. Carpenter

FARGOS Development, LLC, 757 Delano Road, Yorktown Heights, NY 10598 USA
(email: gcc@fargos.net)

Abstract
The FARGOS/VISTA™ suite of technologies implements
an infrastructure for the development, deployment and
non-stop operation of transparently distributed, multi-
threaded, architecture-neutral, object-oriented peer-to-
peer applications. These capabilities can be applied in a
variety of paradigms, ranging from simple client/server
applications to more sophisticated applications that are
dynamically loaded into to a pool of cooperating host
systems, as well as fault-tolerant systems that eliminate
single points of failure. With little effort, these
capabilities can be exploited to provide conventional
applications with unprecedented reliability. This is
illustrated by the implementation of Byzantine fault-
tolerant transaction monitor for HTTP-based
applications.

1. Introduction

FARGOS/VISTA™1 is a suite of technologies that
provide a transparently distributed, high-performance,
multi-threaded, architecture-neutral, object-oriented, peer-
to-peer environment that runs on a variety of operating
systems and hardware platforms. FARGOS/VISTA
benefits from years of experience with DRAGONS2,
originally developed by IBM Research in 1990 for the
management of proposed the National Research and
Education Network and ultimately deployed in the
National Science Foundation Network [1] and as the
system monitor for the IBM 9076 SP1 scalable parallel
processor.

The FARGOS/VISTA Object Management
Environment shares many characteristics with its
predecessor, the DRAGONS Data Engine. A partial list
includes the following:
• Every object (and thread) is accessible from any peer,

although the invocation of a method may be denied
to a lack of needed authorization. This should be

1 FARGOS/VISTA is an acronym for Fantastic And
Really Great Operating System / Various Interconnected
Systems with Transparent Access.
2 DRAGONS is an acronym for Distributed Reliable
Architecture Governing Over Networks and Systems.

contrasted against environments that only make
available a subset of specially prepared objects
accessible to remote applications. Such
environments require programmers to differentiate
between objects that will be of interest only in the
local address space and those that are of interest
externally.

• All interactions between objects are performed by
sending messages, which cause an appropriate
method to be invoked on the target object. Because
all interactions are performed via the sending of a
message, FARGOS/VISTA-based applications make
no distinction between local and remote objects.

• Every method invocation is handled by a separate
thread of execution. The FARGOS/VISTA Object
Management Environment permits the use of native
kernel threads, but most applications rely on the
high-performance threading facility provided by the
environment as it achieves thread creation rates of
over 25,000 per second on a 700 MHz Intel Pentium
III processor. The development of an event-driven
application becomes trivial and symmetric
multiprocessing hardware can automatically be
exploited with no special investment on the part of
the application programmer.

• The environment is self-describing and any primitive
type and object can be queried for its type at runtime.

• Class implementations in the form of architecture-
neutral object code can be dynamically loaded.

• Code reuse is enhanced by support for
polymorphism, allomorphism and reflection [2].
Reflection also enables object-code-only applications
to be modified. Allomorphism, in which a class only
has to provide methods similar to that of another
class, rather than inherit from a common base class,
helps overcome a significant impediment to code
reuse [3].

FARGOS/VISTA also provides capabilities not found
in its predecessor, including access control as fine as per-
object/per user/per-method and copy-on-write semantics
for complex intrinsic types like strings, sets, sparse and
associative arrays.

mailto:gcc@fargos.net?subject=IPTPS 02 submission

2 of 5

2. The FARGOS/VISTA Object Model

The FARGOS/VISTA object model is intended to be
simple to understand, consistent and yet powerful.
Consider the following rules that pertain to the definition
of classes:

• A class defines both the variables that represent
the state of a particular object (these are called
instance variables) and the operations that can be
performed against objects of a particular class
(these operations are called methods).

• A class is uniquely named by three elements: a
name space, the class name and a version Id.
The FARGOS/VISTA Object Management
Environment supports the simultaneous use of
multiple versions of a class. This helps
eliminate the requirement to simultaneously
upgrade all peer systems or existing persistent
objects and it is an important element required
for non-stop operation.

• A class can inherit from one or more classes
(i.e., multiple inheritance is supported).

• A class must inherit from the base class Object
[4]. This can either be explicitly stated or
implied as a property of inheriting from another
base class that in turn eventually inherits from
the class Object.

• Every class must have both a create and a delete
method. While most classes have more
methods, it is entirely possible to have a useful
class that only implements these two methods.

The rules above pertain to the static nature of class
definitions. The FARGOS/VISTA object model also
includes operational aspects that are unconventional.

• Every FARGOS/VISTA object and thread is
identified by a globally unique identifier, which
is automatically generated at the time the object
or thread is created. This unique identifier is
referred to as an object Id.

• Two objects or threads can only interact through
the sending of a message. This restriction is
made visible in Object Implementation
Language 2 (OIL2): it does not permit the use of
pointers and thus the direct manipulation of
another object's instance variables [5]. In OIL2,
a message is sent using the send statement.

• In general, when a message is received for an
object, the indicated method is executed. This
process is called a method invocation. The
indicated method may have a null body, which
means that no code is to be executed. The delete
method of many classes has this characteristic.

• If an object's method body is not null, then its
execution is performed by a separate thread.

This means that the runtime environment of
FARGOS/VISTA objects is one in which
parallelism is supported at a fine level of
granularity, namely that of a method invocation.
In contrast to conventional programming
models, this means that FARGOS/VISTA-based
applications are composed of collections of
active objects.

• By default, only one method can be active on an
object at a time. This restriction enforces safe
behavior by default and prevents race conditions,
a common issue in multi-threaded environments.
Except in very complex cases, programmers
need take no action to disable the default
behavior, but this capability is available.

• If more than one method is active against an
object, the other method cannot proceed until the
currently active method is suspended. Again,
the default is to enforce safe behavior and
prevent race conditions, but this can be
overridden by setting a thread as preemptable.

FARGOS/VISTA has been used to build a variety of
applications, including several that use World Wide Web
browsers as a Graphic User Interface. Examples include
www.alecbaldwin.com and an integrated document
management system for www.dmllc.com.

3. HTTP-accessible Services

As part of its standard distribution, the
FARGOS/VISTA Object Management Environment
includes an HTTP 1.1 [6] server that has several intrinsic
abilities. The most frequently used ability provides read-
only access to a document tree that is comprised of a
collection of directories located on locally accessible file
systems. As part of its fundamental feature set, the HTTP
server also implements an automatic cache of previously
referenced documents. The HTTP server also supports
server-side-include directives, which enable HTML to be
generated at the time of a query based on templates and
environment variables.

The HTTP server is implemented as a collection of
objects that interact within the transparently distributed
environment. A low-level discussion of the object
interactions can be found in [7], but a high level
description is useful as an aid to understanding the
forthcoming discussion of adding Byzantine fault-
tolerance. Incoming connections for a HTTP server are
accepted by an HTTPdaemon [8] object, which in turn
creates a distinct HTTPfastReceive object to handle all
input and output for a given connection. The
HTTPdaemon object also creates a single
URLdirectory [9] for the web site whose primary
responsibility is to map the name of a requested Uniform

http://www.alecbaldwin.com/
http://www.dmllc.com/

3 of 5

Resource Identifier (URI) [10], such as "/index.html", to
an object Id. If the object indicated by the URI is not
already registered with the URLdirectory, a request to
retrieve the URI is made of the URLfileLoader (or
allomorphic equivalent) [11] object that is responsible for
the corresponding section of the HTTP server's naming
tree. Ultimately, either an object is located (or created as
a result of the query) and further processing of the HTTP
client's request is handed off or else a "Not Found" error
is returned.

Multiple, independent web sites can reside within the
same address space merely by creating an appropriate
HTTPdaemon object for each web site. Since the
FARGOS/VISTA Object Management Environment
provides a transparently distributed environment, services
can be provided by remote hosts without either the HTTP
server or the service provider applications being aware of
the fact that they are not residing within the same address
space or same physical host. This ability can be exploited
for a variety of purposes, including load-balancing or
secure access to services made available by hosts that are
not reachable from the public Internet. For example, a
server farm could handle a sudden increase in load for a
given customer site by creating appropriate
HTTPdaemon objects on some elements of the farm that
were not heavily utilized. Source documents, templates
and images would be automatically cached at their first
reference and server-side-including processing would be
performed by the new members of the web site's server
pool. The discussion below, however, focuses on the
implementation of Byzantine-fault-tolerant services.

4. Byzantine Fault Tolerant Transactions

A fault-tolerant system is able to handle the
occurrence of a fault without causing the system to stop
or produce an incorrect result. The basic premise is that a
redundant system can take over when the original system
has failed. Most efforts to utilize redundancy result in
only highly available, but not fault-tolerant systems.
Highly available systems provide a means to return the
system to an operational state within a period shorter than
that required to repair the fault in question; however, they
do not guarantee that work in progress at the time the
fault occurred will be preserved. For those systems that
do provide fault-tolerance, the most common approach is
to tolerate a certain class of faults. Faults that are of a
different nature than those expected will cause the system
to fail.

The ability to handle arbitrary (including malicious)
faults is termed Byzantine-fault-tolerance [12]. Instead of
assuming only safe failure modes (e.g., the power fails
and the machine quits functioning cleanly), Byzantine-
fault-tolerant systems also deal with failures where

memory is corrupted or a CPU is computing incorrect
results. They also address faults caused by a hostile
intruder that has taken over a machine and is attempting
to force the system to take certain actions.

In 1999, theoretical work by Miguel Castro and
Barbara Liskov [13] was applied to create a
FARGOS/VISTA-based Byzantine fault-tolerant
transaction monitor known as FARGOS/SolidState. The
FARGOS/SolidState application classes were
subsequently interfaced to the FARGOS/VISTA-based
HTTP server [14].

5. FARGOS/SolidState HTTP Adapter

To implement a Byzantine fault-tolerant service, at
least 4 machines are required. The actual formula is:

machines = 3 *simultaneousFaults + 1

The very simplified flow for a transaction is described
below:

• The client application submits a transaction to a
coordinator who will handle the processing of
the request and ultimately return a response.
The interface exposed to the client application is
that of the coordinator—the client application is
unaware of the Byzantine fault-tolerant
algorithms being executed by the coordinator.

• The coordinator forwards the request to the pool
of servers participating in the transaction.

• Each server performs the transaction on its own
and sends back the computed result to the
coordinator.

• The coordinator collects all of the responses and
verifies them for correctness. If a correct result
can be obtained, this is provided to the
requesting client application; otherwise, the
client application is informed that an error has
occurred.

Given the description above, in the simplest case there
are six individual components: the client application, the
coordinator and the four members of the server pool. The
algorithm for Byzantine fault-tolerance handles failures
associated with the servers; however, the client
application and the coordinator are single points of failure
that are not tolerated. Consequently, the optimal
deployment would be to collocate the logic for the
coordinator with the client application, thus eliminating
the coordinator as a distinct single point of failure and
tying the fate of the client and the coordinator together.
Collocation is often feasible if the coordinator logic is
provided as a library against which a client application
must link.

Unfortunately, when dealing with HTTP-based
applications, the client application issuing a request will
usually be a web browser or similar application. Except

4 of 5

under special circumstances, such as a mandate from a
corporate Information Services department, a service
provider programmer cannot assume the ability to deploy
and collocate the necessary coordinator logic with an
arbitrary end user's client application. Note, however,
that simply separating the coordinator logic from the
client application introduces a single point of failure and,
therefore, it can be argued that this would defeat the
purpose of attempting to provide Byzantine fault-tolerant
services.

The FARGOS/SolidState HTTP adapter uses the
capabilities of the FARGOS/VISTA Object Management
Environment to solve this problem. When a new
Byzantine fault-tolerant session is created, three objects
are created on each machine within the server pool:

• An object that will perform the actual
application-specific services on behalf of the
client. This is often referred to as the state
variable.

• A Byzantine fault-tolerant ReplicaServer
object, which acts as the transaction monitor for
the application-specific services provided by the
state variable object above.

• A proxy object for the client application that
implements the coordinator logic. It receives a
request from the client application and interacts
with the pool of ReplicaServer objects to
initiate a transaction, verify the results and return
a response back to the client application. Note
that a coordinator object is created on each
server, so the potential flaw of the coordinator
representing a single point of failure has been
sidestepped.

Each client proxy object registers itself with the local
URLdirectory object associated with the web site. When
the HTTPdaemon receives any HTTP queries that refer
to services provided by the Byzantine fault-tolerant
service provider, the HTTP server hands the request off to
the client proxy object for processing. The client proxy
object issues the request to all of the ReplicaServer
objects and waits to collect and validate the responses.
Each individual ReplicaServer object invokes the request
against its local application-specific service provider
object, obtains the result of the work and sends it back to
the requesting client proxy object. The requesting client
proxy object formats the result as an appropriate response
to be shipped back via HTTP (typically, it is a server-
side-include processed HTML file).

6. Identifying Replicated Services

Previously, it was noted that every FARGOS/VISTA
object is automatically assigned a unique object Id.
While it is often necessary to be able to address each

distinct object, this same ability poses a significant
problem when dealing with replicated objects. Normally,
a client application wants to use the local provider of a
replicated service. Since each object has a unique Id,
applications utilizing replicated services would either
have to be aware of the Id of each of the peer objects and
determine the local object (which violates transparency)
or risk having a method invocation transparently
forwarded between hosts. DRAGONS solved this
problem by either the duplication and subsequent
importation of an object into a remote system or by
permitting an object to rename itself to a specified object
Id. Either mechanism enabled objects in distinct address
spaces to be assigned identical Ids. It also made it
impossible to subsequently address a particular replicated
object since the unique name was lost. For various
reasons, which are not elaborated here, FARGOS/VISTA
does not permit an object to change its object Id;
however, it does permit the duplication and importation
of an object and more than one object Id can refer to a
given object (object Ids are actually a many-to-one
mapping). The preferred FARGOS/VISTA solution is to
permit objects to register themselves as named services.
Anywhere an object Id can be used as the target of a
method invocation, the name of a service can be used as
well. This solution allows replicated objects to be
uniquely identified whenever required (such as when they
issue an RPC-style method invocation to a potentially
remote object) and as a locally resolved service name
when a local implementation is desired.

In the context of the Byzantine fault-tolerant services
discussed above, both the client proxy object and the state
variable are identified using service names rather than
object Ids. While a state variable is never directly
exposed to the client application, assigning it a service
name eliminates the need for a client proxy object to be
informed about the object Ids of the state variables that
were created by the ReplicaServer objects on each of the
participating servers. The ReplicaServer transaction
monitors are able to interact with multiple state variables,
so the name of the relevant state variable is passed as an
argument, as illustrated below:

result = send "issueRequest"("processRequest",
argList, stateVariable) to replicaProxy;

Since the request issued to each ReplicaServer is
identical, it becomes feasible to use multicast vs.
individual method invocations to each object.

While not synchronized, the proxy client objects are
created on each server to eliminate the single point of
failure that would be introduced by a single coordinator
and thus implement a replicated service. Consequently,
the client proxy objects are identified to client
applications using a service name rather than their
individual object Ids.

5 of 5

7. Reconnecting a Stuck Client

As noted earlier, it would be ideal to locate the
coordination logic with the client application.
Unfortunately, this is not possible if one is attempting to
provide an HTTP-based service accessible to any
potential client, including a individual using telnet and
entering the HTTP command and headers by hand.
Normally, an HTTP client will resolve an address and
connect to a specific HTTP server. Since the proxy client
objects are replicated across all of the participating
servers, it does not matter to which server the client
application successfully connects. Unfortunately, the
client application may attempt to connect to a failed
server or establish a connection to a host that
subsequently fails. An additional mechanism must be
deployed to enable a client that is unaware of the
population of the server pool to get unstuck from the
failed server. Several techniques are possible, ranging
from crude software tricks like round-robin DNS to load-
balancing front-ends, either in software like Narwhal or
any one of a variety of hardware-oriented product
offerings [15].

Since the coordinator logic is not collocated with the
client application, recovery must be manually initiated by
the user. In practice, this means the user becomes
impatient waiting for a response and clicks on the submit
button a second time. The second attempt should cause a
new HTTP connection to be initiated and redirected to
one of the operational members of the server pool. If the
transaction had been successfully requested prior to the
failure of the original server acting as coordinator, the
cached result can be returned immediately; otherwise, the
transaction request will be finally issued.

8. Conclusions

The FARGOS/VISTA suite of technologies provides a
powerful, flexible and productive environment for the
construction and deployment of robust distributed
applications that work across a variety of machine
architectures and operating systems. By creating a
transparently distributed environment in which every
object is accessible from any interconnected host,
FARGOS/VISTA enables the construction of
sophisticated services, such as Byzantine fault-tolerant
transactions, even for clients that are strictly client/server-
oriented and not under the control of the service provider.
Because every method invocation is performed by a
separate thread of execution, applications are naturally
event-driven and opportunities for parallel execution can
be exploited on SMP-capable hardware or physically
distinct hosts without additional effort on the part of the

application developer, increasing the scalability of the
resulting application.

The FARGOS/VISTA Software Development Kit and
a demonstration of a web site using a Byzantine fault-
tolerant shopping cart are available for downloading from
http://www.fargos.net/downloads.html.

9. References

[1] R. Lehman, G. Carpenter and N. Hien, "Concurrent Network
Management with a Distributed Management Tool",
USENIX LISA VI conference proceedings, pp. 235-244,
1992.

[2] J. Ferber, "Computational reflection in class based object-
oriented languages", OOPSLA 1989 conference proceedings,
pp. 317-326, 1989.

[3] S. Yu, "Class-is-type is inadequate for object reuse", ACM
SIGPLAN Notices, vol. 36 no. 6, pp. 50-59, 2001.

[4] "OIL2 Class Standard.Object",
http://ww.fargos.net/classDoc/Standard/oil2Object-0.html.

[5] FARGOS/VISTA Object Implementation Language 2
Reference Manual,
http://www.fargos.net/documents/manuals/OIL2reference.pd
f.

[6] R. Fielding, et. al, "Hypertext Transfer Protocol HTTP/1.1",
RFC 2616, 1999

[7] FARGOS/VISTA HTTP Server Programmer's Guide,
http://www.fargos.net/documents/manuals/HTTPguide.pdf

[8] "OIL2 Class Standard.HTTPdaemon",
http://www.fargos.net/classDoc/Standard/oil2HTTPdaemon-
0.html.

[9] "OIL2 Class Standard.URLdirectory",
http://www.fargos.net/classDoc/Standard/oil2URLdirectory-
0.html.

[10] "Uniform Resource Identifiers (URI): Generic Syntax",
RFC 2396, 1998.

[11] "OIL2 Class Standard.URLfileLoader",
http://www.fargos.net/classDoc/Standard/oil2URLfileLoader
-0.html

[12] L. Lamport, R. Shostak and M. Pease, "The Byzantine
Generals Problem", ACM Transactions on Programming
Languages and Systems, vol 4 issue 3, pp. 382-401, 1982.

[13] M. Castro and B. Liskov, "A Correctness Proof for a
Practical Byzantine-Fault-Tolerant Replication Algorithm",
Technical Memo MIT/LCS/TM-590, 1999.

[14] FARGOS/SolidState HTTP Server Adapter User's Guide,
http://www.fargos.net/documents/manuals/SolidStateWeb.pd
f

[15] G. Carpenter and G. Goldzsmidt, "Improving the
Availability and Performance of Network Mediated
Services", INET'99 conference proceedings,
http://www.isoc.org/inet99/proceedings/4g/4g_3.htm.

http://www.fargos.net/downloads.html
http://ww.fargos.net/classDoc/Standard/oil2Object-0.html
http://www.fargos.net/documents/manuals/OIL2reference.pdf
http://www.fargos.net/documents/manuals/OIL2reference.pdf
http://www.fargos.net/documents/manuals/HTTPguide.pdf
http://www.fargos.net/classDoc/Standard/oil2HTTPdaemon-0.html
http://www.fargos.net/classDoc/Standard/oil2HTTPdaemon-0.html
http://www.fargos.net/classDoc/Standard/oil2URLdirectory-0.html
http://www.fargos.net/classDoc/Standard/oil2URLdirectory-0.html
http://www.fargos.net/classDoc/Standard/oil2URLfileLoader-0.html
http://www.fargos.net/classDoc/Standard/oil2URLfileLoader-0.html
http://www.fargos.net/documents/manuals/SolidStateWeb.pdf
http://www.fargos.net/documents/manuals/SolidStateWeb.pdf
http://www.isoc.org/inet99/proceedings/4g/4g_3.htm

	Introduction
	The FARGOS/VISTA Object Model
	HTTP-accessible Services
	Byzantine Fault Tolerant Transactions
	FARGOS/SolidState HTTP Adapter
	Identifying Replicated Services
	Reconnecting a Stuck Client
	Conclusions
	References

